CSED490Y: Optimization for Machine Learning

Week 12: Variance reduced methods

Namhoon Lee

POSTECH

Spring 2022

Admin

/ 15mins / group

Midway group presentation:

- Schedule:
 - May 11: groups 6, 4, 3, 7, 10
 - May 18: groups 1, 5, 9, 11, 8
 - May 25: groups 2, 12, 13 ~ Guiz >

Upload your slides on PLMS by 11am of the presentation day.

Recap: SGD

Stochastic orcale
$$x \rightarrow \overline{fx} \rightarrow \overline{fx} = E[\overline{fx}] = rf(x)$$

Finite sum $\overline{fx} + f(x) := -\frac{1}{n} - \frac{2}{n!} + f_i(x) - example? ZRM$
Stochastic gradient / unbiased estimator roudenizer \overline{f} \overline{f} .
Stochastic gradient / unbiased estimator \overline{f} \overline{f} .
 $X_{Erl} = X_{t} - \frac{n}{n} + \frac{n}{n} +$

3 / 20

Problem

Why is stochastic gradient not as good as deterministic gradient?

- In particular not as fast in the smooth case (no self-tuning).
- Expected gradient does not go to zero as it converges (need small step size).

 $X = x^{\#}$

1~1/je

 $\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)\right] - f(x^{*}) \leq \frac{R^{2}}{2\eta D} + \frac{\dot{G}^{2}\eta}{2} \sim O(1/T)$

Trade-off:

Illustration:

Convergence result:

(stochastic) O(1/\epsilon) iterations but requires 1 gradient per iteration.
 (deterministic) O(log(1/\epsilon)) iterations but requires n gradients per iteration.

concerquence vote

 $\mathcal{E}\left(\|\tilde{\mathcal{J}}_{\mathcal{F}}\|_{\mathcal{V}}^{2}\right) \leq G^{2}$

 $\sim O\left(\frac{1}{R}\right)$

Between deterministic and stochastic methods, a common variant is to use mini-batch of sample \mathcal{B}_t to approximate the gradient at x_t

$$\tilde{g}(x_t) = \frac{1}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \nabla f_i(x_t) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_t), \quad \forall f(x_t) \in \mathcal{F}_i(x_t)$$

and perform gradient descent with the approximate gradient

$$x_{t+1} = x_t - \eta \tilde{g}(x_t) \; .$$

I.e., rather than picking a single f_i and using ∇f_i , pick $B_{\epsilon} f_i$'s and use the average.

Mini-batching

Mini-batch SGD:

$$x_{t+1} = x_t - \eta \frac{1}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \nabla f_i(x_t) .$$

Unbiased estimator (with uniform sampling):

$$\mathbb{E}\bigg[\frac{1}{|\mathcal{B}_t|}\sum_{i\in\mathcal{B}_t}\nabla f_i(x_t)\bigg] = \frac{1}{|\mathcal{B}_t|}\sum_{i\in\mathcal{B}_t}\mathbb{E}[\nabla f_i(x_t)] = \frac{1}{|\mathcal{B}_t|}\sum_{i\in\mathcal{B}_t}\nabla f(x_t) = \nabla f(x_t)$$

Parallelizable:

 \triangleright | \mathcal{B} | gradients can be computed independently in parallel (distributed processing).

although requires more work per iteration.

Mini-batching SGD minit batch SGD (BI = 2^K $oldsymbol{ ho}$ Ö 0 Reduces variance: G 1 1 0 -0

Although the variance is still not zero (no self-tuning).

Variance reduction

Many forms of variance reduction can exist.

ncreasing $|\mathcal{B}_t|$ is a form of variance reduction. A geometric schedule like $|\mathcal{B}_{t+1}| = |\mathcal{B}_t|/\rho$ can achieve a faster rate. Increasing $|\mathcal{B}_t|$

• But this will eventually require $\mathcal{O}(n)$ iteration cost.

Other approaches

- include control variates, importance sampling, re-parameterization trick, etc.
- They improve constants in convergence rate, but not the rate itself unless variance goes to zero.

Stochastic average gradient

Stochastic average gradient or SAG (Schmidt et al. 2017) is one of the very first variance reduction methods that obtain linear rate.

Algorithm:

 $\hat{c} = \{1, \frac{1}{16}, n\}$ $f_{1} \uparrow \uparrow \uparrow \uparrow$ $x^{k+1} = x^k - \frac{\eta_k}{n} \sum_{i=1}^n y_i^k , \text{ where } y_i^k = \begin{cases} \nabla f_i(x^k) & \text{if } i = i_k \\ y_i^{k-1} & \text{otherwise }. \end{cases}$

Idea:

- Maintain a table of gradients ∇f_i for all *i*.
- Update the table with most recent gradient ∇f_{i_k} with randomly selected i_k at each iteration k.
- Take the parameter update step using the average of these gradients.

I.e., The update step incorporates a gradient with respect to each function like FG, but each iteration only computes the gradient with respect to a single example like SG.

XeR

-202

SAG

Pseudo-code (with d to track the quantity $\sum_{i=1}^{n} y_i$):

Algorithm SAG (step time = ϕ) Initialize $d = 0, y_i = 0$ for i = 1, 2, ..., nfor k = 0, 1, ... doSample i from $\{1, 2, ..., n\}$ $\forall \tau = \nabla f_{\tau}(x^{k-1})$ $y_i = \nabla f_i(x)$ $y_i = \nabla f_i(x)$ $x = x - \frac{\alpha}{n}d$ end for $f_{\tau}(x) = \frac{1}{2}(\alpha_{\tau}^{T}x - b_{\tau})^{2}$

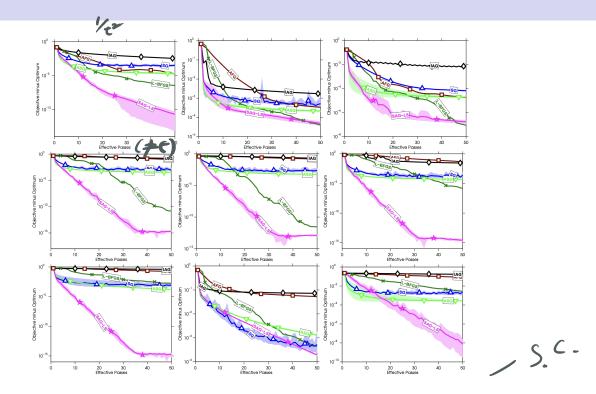
Further notes on SAG:

- SAG uses a gradient for every example, although the gradients might out of date.
- SAG requires a memory, but it is possible to reduce memory (*e.g.* linear models).
- ▶ The stochastic gradient *d* of SAG is not unbiased $(\mathbb{E}[d^k] \neq \nabla f(x^k))$, but the variance is much reduced from that of the standard stochastic gradient.

Theorem For ∇f_i is L-continuous, SAG with $\alpha_k = 1/16L$ satisfies $\mathbb{E}[f(\bar{x}^k)] - f(x^*) \leq \mathcal{O}(\frac{32n}{k})$. Further, if f is μ -strongly-convex, then $\mathbb{E}[f(x^k)] - f(x^*) \leq \mathcal{O}(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^k)$.

- Despite the low cost of the SAG iterations, with a constant step-size the SAG iterations have an O(1/k) convergence rate for convex objectives and a linear convergence rate for strongly-convex objectives, like the FG method.
- SAG achieves convergence rates similar to those of deterministic method; however the constants are different.
- The proof does not seem to be very straightforward.

SAG



Results on binary data sets for L2-regularized logistic regression

Another variant is stochastic variance reduced gradient or SVRG (Johnson and Zhang 2013), which gets rid of memory by occasionally computing full gradient.

where
$$y_t$$
 is updated every *m* iterations.

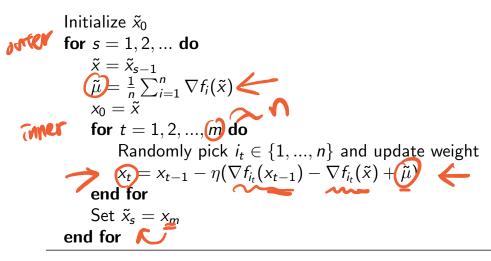
$$\begin{array}{l}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$$

SVRG does not store a full table of gradients but just an average and updates it occasionally.

It can be shown to reduce variance and achieve convergence rates similar to SAG.

► The convergence analysis is much simpler.

Stochastic variance reduced gradient



(inner loop) same effort as stochastic method

(outer loop) full gradient computation

The idea is to reduce variance by recentering: for any two points x and y

$$\tilde{g}(x) = \nabla f_i(x) - (\nabla f_i(y) - \nabla f(y))$$

is a stochastic gradient (*i.e.*, $\mathbb{E}[\tilde{g}(x)] = \nabla f(x)$).

We can develop convergence analysis based on this.

Lemma

Let $f_1, ..., f_n$ be β -smooth convex functions, *i* be a random variable uniformly distributed in [1, n]. Then,

$$\mathbb{E}[\|
abla f_i(x) -
abla f_i(x^*)\|_2^2] \le 2\beta(f(x) - f(x^*))$$
.

l.e., the expected value of recentered gradient (squared norm) will decrease as x converges to x^* .

Proof. Let $g_i(x) = f_i(x) - f_i(x^*) - \nabla f_i(x^*)^\top (x - x^*)$. By convexity of f_i one has $g_i(x) \ge 0$. Using the progress bound for smooth functions yields $\|\nabla g_i(x)\|_2^2 \le 2\beta g_i(x)$, which can be written as

$$\|
abla f_i(x) -
abla f_i(x^*)\|_2^2 \leq 2eta(f_i(x) - f_i(x^*) +
abla f(x^*)(x - x^*))$$
.

Taking expectation will finish the proof.

Theorem

Let $f_1, ..., f_n$ be β -smooth convex functions and f be α -strongly convex. Then, SVRG with $\eta = 1/10\beta$ and $k = 20(\beta/\alpha)$ satisfies

$$\mathbb{E}f(y^{s+1}) - f(x^*) \le 0.9^s(f(y^{(1)}) - f(x^*))$$
.

Proof is referred to Bubeck et al. 2015.

Note:

- ► This result shows linear convergence rate.
- SVRG requires n + m gradient computations where <u>m</u> depends on κ .

SVRG



Multiclass logistic regression (convex) on MNIST.

Any questions?

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.

- Bubeck, Sébastien et al. (2015). "Convex optimization: Algorithms and complexity". In: *Foundations and Trends in Machine Learning* 8.3-4, pp. 231–357.
- Johnson, Rie and Tong Zhang (2013). "Accelerating stochastic gradient descent using predictive variance reduction". In: *Advances in neural information processing systems* 26.
- Schmidt, Mark, Nicolas Le Roux, and Francis Bach (2017). "Minimizing finite sums with the stochastic average gradient". In: *Mathematical Programming* 162.1, pp. 83–112.