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Admin

Midway group presentation:

I Schedule:

I May 11: groups 6, 4, 3, 7, 10

I May 18: groups 1, 5, 9, 11, 8

I May 25: groups 2, 12, 13

I Upload your slides on PLMS by 11am of the presentation day.
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Recap: SGD

Stochastic orcale

Finite sum

Stochastic gradient / unbiased estimator

Convergence rates
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Problem

Why is stochastic gradient not as good as deterministic gradient?

I In particular not as fast in the smooth case (no self-tuning).

I Expected gradient does not go to zero as it converges (need small step size).

Illustration:

Convergence result:
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Trade-o↵:

I (stochastic) O(1/✏) iterations but requires 1 gradient per iteration.

I (deterministic) O(log(1/✏)) iterations but requires n gradients per iteration.
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Mini-batching

Between deterministic and stochastic methods, a common variant is to use mini-batch

of sample Bt to approximate the gradient at xt

g̃(xt) =
1

|Bt |

X

i2Bt

rfi (xt) ⇡
1

n

nX

i=1

rfi (xt) ,

and perform gradient descent with the approximate gradient

xt+1 = xt � ⌘g̃(xt) .

I.e., rather than picking a single fi and using rfi , pick B fi ’s and use the average.
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Mini-batching

Mini-batch SGD:

xt+1 = xt � ⌘
1

|Bt |

X

i2Bt

rfi (xt) .

Unbiased estimator (with uniform sampling):

E


1

|Bt |

X

i2Bt

rfi (xt)

�
=

1

|Bt |

X

i2Bt

E[rfi (xt)] =
1

|Bt |

X

i2Bt

rf (xt) = rf (xt)

Parallelizable:

I |B| gradients can be computed independently in parallel (distributed processing).

I although requires more work per iteration.
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Mini-batching

Reduces variance:

I Although the variance is still not zero (no self-tuning).
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Variance reduction

Many forms of variance reduction can exist.

Increasing |Bt |

I is a form of variance reduction.

I A geometric schedule like |Bt+1| = |Bt |/⇢ can achieve a faster rate.

I But this will eventually require O(n) iteration cost.

Other approaches

I include control variates, importance sampling, re-parameterization trick, etc.

I They improve constants in convergence rate, but not the rate itself unless variance

goes to zero.
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Stochastic average gradient

Stochastic average gradient or SAG (Schmidt et al. 2017) is one of the very first

variance reduction methods that obtain linear rate.

Algorithm:

x
k+1

= x
k
�

⌘k
n

nX

i=1

y
k
i , where y

k
i =

(
rfi (x

k
) if i = ik

y
k�1
i otherwise .

Idea:

I Maintain a table of gradients rfi for all i .

I Update the table with most recent gradient rfik with randomly selected ik at

each iteration k .

I Take the parameter update step using the average of these gradients.

I.e., The update step incorporates a gradient with respect to each function like FG, but

each iteration only computes the gradient with respect to a single example like SG.
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SAG

Pseudo-code (with d to track the quantity
Pn

i=1 yi ):

Algorithm SAG

Initialize d = 0, yi = 0 for i = 1, 2, ..., n
for k = 0, 1, ... do

Sample i from {1, 2, ..., n}
d = d � yi +rfi (x)

yi = rfi (x)

x = x �
↵
n d

end for

Further notes on SAG:

I SAG uses a gradient for every example, although the gradients might out of date.

I SAG requires a memory, but it is possible to reduce memory (e.g. linear models).

I The stochastic gradient d of SAG is not unbiased (E[dk
] 6= rf (x

k
)), but the

variance is much reduced from that of the standard stochastic gradient.
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SAG

Theorem

For rfi is L-continuous, SAG with ↵k = 1/16L satisfies

E[f (x̄k)]� f (x
⇤
)  O(

32n

k
) .

Further, if f is µ-strongly-convex, then

E[f (xk)]� f (x
⇤
)  O

⇣⇣
1�min

n µ

16L
,
1

8n

o⌘k⌘
.

I Despite the low cost of the SAG iterations, with a constant step-size the SAG

iterations have an O(1/k) convergence rate for convex objectives and a linear

convergence rate for strongly-convex objectives, like the FG method.

I SAG achieves convergence rates similar to those of deterministic method; however

the constants are di↵erent.

I The proof does not seem to be very straightforward. 11 / 20
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SAG

Results on binary data sets for L2-regularized logistic regression
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Stochastic variance reduced gradient

Another variant is stochastic variance reduced gradient or SVRG (Johnson and Zhang

2013), which gets rid of memory by occasionally computing full gradient.

xt+1 = xt � ⌘(rfit (xt)� (rfit (yt)�rf (yt)))

where yt is updated every m iterations.

I SVRG does not store a full table of gradients but just an average and updates it

occasionally.

I It can be shown to reduce variance and achieve convergence rates similar to SAG.

I The convergence analysis is much simpler.
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Stochastic variance reduced gradient

Algorithm SVRG

Initialize x̃0

for s = 1, 2, ... do
x̃ = x̃s�1

µ̃ =
1
n

Pn
i=1 rfi (x̃)

x0 = x̃

for t = 1, 2, ...,m do
Randomly pick it 2 {1, ..., n} and update weight

xt = xt�1 � ⌘(rfit (xt�1)�rfit (x̃) + µ̃)
end for
Set x̃s = xm

end for

I (inner loop) same e↵ort as stochastic method

I (outer loop) full gradient computation
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SVRG

The idea is to reduce variance by recentering: for any two points x and y

g̃(x) = rfi (x)� (rfi (y)�rf (y))

is a stochastic gradient (i.e., E[g̃(x)] = rf (x)).

We can develop convergence analysis based on this.
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SVRG

Lemma

Let f1, ..., fn be �-smooth convex functions, i be a random variable uniformly

distributed in [1, n]. Then,

E[krfi (x)�rfi (x
⇤
)k

2
2]  2�(f (x)� f (x

⇤
)) .

I.e., the expected value of recentered gradient (squared norm) will decrease as x

converges to x
⇤
.

Proof. Let gi (x) = fi (x)� fi (x
⇤
)�rfi (x

⇤
)
>
(x � x

⇤
). By convexity of fi one has

gi (x) � 0. Using the progress bound for smooth functions yields krgi (x)k
2
2  2�gi (x),

which can be written as

krfi (x)�rfi (x
⇤
)k

2
2  2�(fi (x)� fi (x

⇤
) +rf (x

⇤
)(x � x

⇤
)) .

Taking expectation will finish the proof.
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SVRG

Theorem

Let f1, ..., fn be �-smooth convex functions and f be ↵-strongly convex. Then, SVRG

with ⌘ = 1/10� and k = 20(�/↵) satisfies

Ef (y s+1
)� f (x

⇤
)  0.9s(f (y (1))� f (x

⇤
)) .

Proof is referred to Bubeck et al. 2015.

Note:

I This result shows linear convergence rate.

I SVRG requires n +m gradient computations where m depends on .
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SVRG

Multiclass logistic regression (convex) on MNIST.

18 / 20



Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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