
CSED490Y: Optimization for Machine Learning

Week 13: Second order methods

Namhoon Lee

POSTECH

Spring 2022

1 / 23

Admin

Online lectures:

I This week: May 16 (Mon) and May 18 (Wed)

I Next week: May 25 (Wed)

Midway group presentation:
I Schedule:

I May 11: groups 6, 4, 3, 7, 10
I May 18: groups 1, 5, 9, 11, 8
I May 25: groups 2, 12, 13

I Upload your slides on PLMS by 11am of the presentation day.

2 / 23

Newton’s method

For unconstrained optimization problem

min
x

f (x)

gradient descent (GD) can be interpreted as minimizing a quadratic approximation

f (y) ⇡ f (x) +rf (x)>(y � x) +
1

2⌘
ky � xk

2
2 .

Finding the minimum of it yields the GD update rule

xt+1 = xt � ⌘rf (xt) .

3 / 23

Newton’s method

The idea is to approximate f better with the second order Taylor approximation

f (y) ⇡ f (x) +rf (x)>(y � x) +
1

2
(y � x)>r2

f (x)(y � x) ,

and minimizing it gives Newton’s method:

xt+1 = xt �
�
r

2
f (xt)

��1
rf (xt) ,

where the Hessian r
2
f (xt) is positive definite and thus invertible.

It turns out that for smooth and strongly convex function f , Newton’s method
achieves quadratic convergence rate of O(log log(1/✏)).

4 / 23

supermen ÉÉ

GD OllyClan
Iterators required to achieve E accuracysuperliner

Newton’s method

Two phase Newton’s method:

Phase 1: damped Newton (when not close to x
⇤)

xt+1 = xt � ⌘
�
r

2
f (xt)

��1
rf (xt)

where the step size ⌘ is found by a back-tracking line search (e.g., Armijo condition).

Phase 2: undamped Newton (when close to x
⇤)

xt+1 = xt �
�
r

2
f (xt)

��1
rf (xt)

which achieves quadratic convergence rate.

5 / 23

Fundy an option q E
In practice startwith some largestepsize

and decreaseit until a

I
t mm dim

Newton’s method

GD vs Newton’s method – illustration

Why would we ever use GD if Newton is so fast?

6 / 23

NI YAI
It f quadrate X new at

Newars notedÉwg

amuses amisap

Newton’s method

GD vs Newton’s method – computations

Gradient descent:
xt+1 = xt � ⌘rf (xt)

I The total number of computations: O(n log(1/✏)).

Newton’s method:
xt+1 = xt �

�
r

2
f (xt)

��1
rf (xt)

I The total number of computations: O(n3 log log(1/✏)).

I.e., GD if n is large (or moderate ✏) and Newton if ✏ is tiny (or smal n).

7 / 23

f smfh x Ic
K MIL

Arena

t

k

Newton’s method

Now let’s see GD for an ill-conditioned quadratic and compare it to the
perfectly-conditioned case:

I GD can point in the direction perpendicular to the minimizer for the
ill-conditioned case, whereas if it points directly to the minimizer for the
perfectly-conditioned case.

I This a↵ects GD performance, and in fact, it is reflected on the convergence rate.

8 / 23

ofay

Newton’s method

We can interpret Newton’s method as a problem of conditioning.

The idea is to rescale space using a�ne transformation and then perform GD.

Rescale x = Ay

Define g(y) = f (x)

I Minimizing g(y) and f (x) is equivalent, i.e., g(y⇤) = f (x⇤).

9 / 23

Xa Xe Getafix

y X

mygoy a matey
x

fCAy
glyt text

Newton’s method

GD after a�ne transformation: example

f (x) =
1

2
x
>
Qx , Q =

100 0
0 1

�

Let A =

1/10 0
0 1

�
and x = Ay . Then

g(y) = f (Ay) =
1

2
y
>
A
>
QAy =

1

2

1/10 0
0 1

�
100 0
0 1

�
1/10 0
0 1

�
y =

1

2
y
>
y

10 / 23

Aman 100

Ania I

R 100

E

II

Newton’s method

How does GD work for g and f ?

GD on g :

y1 = y0 � ⌘r(
1

2
y
>
0 y0) = y0 � y0 = 0

I GD finds the minimum in just 1 step regardless of x0.

GD on f :

x1 = x0 � ⌘r(
1

2
x
>
0 x0) = x0 �

1

100
(Qx0) = x0 �

1 0
0 1/100

�
x0

I For say x0 = [0, 1]>, x1 is not the minimum; GD needs to run many more steps.

11 / 23

goy Eyty

I

p
to

Xe Yay

Newton’s method

GD takes di↵erent trajectories on f (x) and g(y):

I GD is not invariant to a�ne transformation.

12 / 23

Xo Yo

i
t

I

Newton’s method

We have seen that a�ne transformation can speed up GD by rescaling space.

What is a good transformation?

I Ideally a�ne transformation A such that x = Ay and for g(y) = f (x) the local
condition number becomes 1, which requires r2

g(y) = I .

Hence the following has to satisfy

r
2
g(y) = A

>
r

2
f (Ay)A = I .

I A =
�
r

2
f (Ay)

��1/2
will satisfy.

13 / 23

Newton’s method

Newton’s method can be interpreted in this way, i.e., perform GD with the best a�ne
transformation at every step.

yt+1 = yt �
�
r

2
g(yt)

��1
rg(yt)

= yt �
�
A
>
r

2
f (Ayt)A

��1
A
>
rf (Ayt)

= yt � A
�1

�
r

2
f (Ayt)

��1
rf (Ayt)

Muliplying A both sides gives

Ayt+1 = Ayt � (r2
f (Ayt))

�1
rf (Ayt)

or
xt+1 = xt � (r2

f (xt))
�1

rf (xt)

14 / 23

Convergence analysis

Theorem (as in Nocedal and Wright 1999)

Suppose that f is twice di↵erentiable and that the Hessian r
2
f (x) is Lipschitz

continuous in a neighborhood of a solution x
⇤
at which the su�cient condition are

satisfied. Consider the iteration xk+1 = xk + pk , where pk is given by

�r
2
f (xk)�1

rf (xk). Then

1. if the starting point x0 is su�ciently close to x
⇤
, the sequence of iterates

converges to x
⇤
;

2. the rate of convergence of {xk} is quadratic; and

3. the sequence of gradient norms {krf (xk)k} converges quadratically to zero.

15 / 23

11 ofex ofcall sell x glle
matter I norm

Convergence analysis

Proof (of 1 and 2). From the definition of the Newton step and the optimality
condition rf (x⇤) = 0 we have that

xk + pk � x
⇤ = xk � x

⇤
�

�
r

2
f (xk)

��1
rf (xk)

=
�
r

2
f (xk)

��1�
r

2
f (xk)(xk � x

⇤)� (rf (xk)�rf (x⇤)
�
.

We are going to take k · k both sides.

Since the Taylor’s Theorem (or the fundamental theorem of calculus) tells us that

rf (xk)�rf (x⇤) =

Z 1

0
r

2
f (xk + t(x⇤ � xk))(xk � x

⇤)dt ,

16 / 23

Ilka 491 pAxe x

Convergence analysis

we have
��r2

f (xk)(xk � x
⇤)� (rf (xk)�rf (x⇤)

��

=

����
Z 1

0

�
r

2
f (xk)�r

2
f (xk + t(x⇤ � xk))

�
(xk � x

⇤)dt

����

Z 1

0

���r2
f (xk)�r

2
f (xk + t(x⇤ � xk))

���kxk � x
⇤
kdt

 kxk � x
⇤
k
2
Z 1

0
Ltdt =

1

2
Lkxk � x

⇤
k
2 ,

where L is the Lipschitz constant for r2
f (x) for x near x⇤.

Also, since r
2
f (x⇤) is nonsingular, there is a radius r > 0 such that

k(r2
f (xk))�1

k 2kr2
f (x⇤)�1

k for all xk with kxk � x
⇤
k r .

17 / 23

Convergence analysis

Now putting all together gives

kxk + pk � x
⇤
k Lkr

2
f (x⇤)�1

kkxk � x
⇤
k
2 = L̃kxk � x

⇤
k
2 ,

where L̃ = Lkr
2
f (x⇤)�1

k.

Choosing x0 so that kx0 � x
⇤
k min(r , 1/(2L̃)) (i.e., initial point is close to the

minimum), we can use this to deduce that the sequence converges to x
⇤ quadratically.

18 / 23

Convergence analysis

Proof (of 3). By using the relations xk+1 � xk = pk and rf (xk) +r
2
f (xk)pk = 0, we

obtain that

krf (xk+1)k = krf (xk+1)�rf (xk)�r
2
f (xk)pkk

=

����
Z 1

0
r

2
f (xk + tpk)(xk+1 � xk)dt �r

2
f (xk)pk

����

Z 1

0
kr

2
f (xk + tpk)�r

2
f (xk)kkpkk

1

2
Lkpkk

2

1

2
Lk(r2

f (xk))
�1

k
2
krfkk

2

 2Lk(r2
f (x⇤))�1

k
2
krfkk

2,

proving that the gradient norms converge to zero quadratically.
19 / 23

MINTEngthesecondorderTaylor

Quasi Newton methods

Newton’s method is fast, but very expensive.

I Compute Hessian r
2
f (x)

I Solve the system rf (x) +r
2
f (x)d = 0

Quasi-Newton methods take the following form

xt+1 = xt � ⌘B�1
t rf (xt)

where Bt is some approximation of the Hessian.

I The idea is to attempt to replace the Hessian with some approximation that is
less expensive but more useful than simple identity (e.g., diagonal Hessian).

I B
�1
t is updated iteratively.

20 / 23

Neuter d
Teeth

Or inverse

Quasi Newton methods

Quasi Newton methods compute Bt iteratively.

I The idea is that since Bt�1 already contains some information about the Hessian,
make some update to form Bt .

Quasi Newton methods di↵er by how to compute Bt .

I SR1, BFGS, DFP, etc.

The key idea behind quasi Newton methods is to match the gradients of f at the last
two iterations, i.e.,

rf (xt+1) = rf (xt) + Bt+1(xt+1 � xt)

I By rewriting it Bt+1st = yk with st = xt+1 � xt and yt = rf (xt+1 � f (xt)), it is
called the secant equation.

21 / 23

JEX

Thank you

Any questions?

22 / 23

Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.

23 / 23

References I

Nocedal, Jorge and Stephen J Wright (1999). Numerical optimization. Springer.

23 / 23

