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1. Introduction



Federated Learning

Motivation

• Decentralized data

• Data privacy preserving

• Local device HW resources

Figure 1: decentralized setting with data privacy
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Federated Learning

Examples

• Gboard on Android

• Media playback preferences in Safari

• Voice assistant in Siri

• Popular health data types
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Federated Learning

Examples

Figure 2: Gboard on Android 1

1
source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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Federated Learning

Examples

Figure 3: Apple 2

2
source: https:

//www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
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Federated Learning

Examples

Figure 4: Intel & Hospitals 3

3
source: https://newsroom.intel.com/news/

intel-works-university-pennsylvania-using-privacy-preserving-ai-identify-brain-tumors/ 6 / 79
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Federated Learning

Definition [1]

Federated learning(FL) is a machine learning setting where

multiple clients collaborate in solving a ML problem, under the

coordination of a central server. Each client’s raw data is

stored locally and not exchanged or transferred; instead,

updates intended for immediate aggregation are used to achieve

the learning objective.
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Federated Learning

Figure 5: Federated Learning workflow - 1 (client-side)
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Federated Learning

Figure 6: Federated Learning workflow - 2 (client-side)
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Federated Learning

Figure 7: Federated Learning workflow - 3 (client-side)
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Federated Learning

Figure 8: Federated Learning workflow - 4 (server-side)
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Federated Learning

Key issues

• Privacy

• Communication costs

*communication: transmission between server or clients

• Data heterogeneity: violation of I.I.D. assumption (Non-IID)

• System heterogeneity: network bandwidth, asynchronous

Internet connections, etc
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Federated Learning

Two main settings

Cross-device FL Cross-silo FL

Example mobile or IoT devices medical or financial institutes

Data availability available only a fraction
of clients available all clients

Distribution scale massively parallel 2-100 clients

Addressability not accessible accessible to client ids

Client statefulness stateless stateful

Client reliability highly unreliable relatively few failures

Primary bottleneck connection
and communication

computation
or communication

Data partition axis fixed (HFL) fixed (HFL&VFL)

Table 1: Federated learning settings
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2. Algorithms



FedSGD & FedAVG
AISTATS, 2017
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FedAVG [2]

Summary

• The first approach to federated learning (FL).

• It simply extended SGD to FL setting by averaging.

• It proposed two simple algorithms: FedSGD and FedAVG.

• Empirical results show that the FL performance depends on

various hyperparameters: number of participation clients,

number of local epochs and batch size.
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FedSGD & FedAVG

Notation Description

wt model at t-th round

wk
t model of k-th client at t-th round

rfk gradient of objective on the model of k-th client

nk number of local data points of k-th client

K number of all clients

n =
PK

k=1 nk total number of local data points of each client

⌘ learning rate

C participation ratio of clients at each round

E number of local epochs

B local (mini)batch size

uk = E ·
nk
B number of local updates of k-th client on each round

Table 2: Notations
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FedSGD & FedAVG

FedSGD: Federated Stochastic Gradient Descent

Figure 9: FedSGD

wt+1  � wt � ⌘ ·

KX

k=1

nk

n
rfk

(1)

17 / 79

of I Eof

E
G D

Identical



FedSGD & FedAVG

FedAVG: Federated Averaging

Figure 10: FedAVG

wk
t  � wk

t � ⌘ ·rfk (2)

wt+1  � wt � ⌘ ·

KX

k=1

nk

n
rfk

(3)
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FedSGD & FedAVG

FedAVG

Objective of FedAVG

min
w

[F (w) =
KX

k=1

pkFk(w)] (4)

where Fk(w) =
X

⇠2Dk

f(w, ⇠)/nk (5)

pk = nk/
KX

k=1

nk (6)
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FedAVG

Algorithm 1 FedAVG

ServerUpdate(K,B,E, ⌘) . server-side

initialize w0

for t 1, 2, · · · do

m max(C ·K, 1)

St  random set of m clients

for k  1, · · · , |St| in parallel do

wk
t+1  ClientUpdate(k,wt

k)

Aggregate wt+1
 
PK

k=1
nk
n wt+1

k

ClientUpdate(k,w) . client-side

B  split Pk into batches of size B

for i 1, · · · , E do

for b 2 B do

w w � ⌘rl(w; b)

return w to server

20 / 79
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FedAVG

Experiments 4

Test set accuracy over communication rounds (C = 0.1) of

FedSGD (B =1) and FedAVG (B <1).

4See Appendix A (75) for experimental settings.
21 / 79
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Convergence Analysis of FedAvg [3]

Convergence Analysis Summary

Under assumptions (27) and decaying the learning rate,

E[F (wT )� F ⇤]  O

✓
B + C

T

◆
(7)

where B = �+ (E � 1)2

Remarks

The convergence rate depends on ...

• data heterogeneity � := F ⇤
�
PN

k=1 pkF
⇤
k

• number of local updates E

• total number of communication updates T

22 / 79
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Convergence Analysis of FedAvg

Summary

• Data heterogeneity � can lead to slow convergence.

• Too many or less local updates E can lead to slow convergence.

• Too many participation clients K can lead to slow convergence.

• Sampling with replacement can lead to faster convergence.

• Fixed learning rate (⌘t = ⌘) can lead to sub-optimal point when

E > 1.

23 / 79
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Convergence Analysis of FedAvg

Notation Description

N total number of clients

K number of clients that participate in every round

T total number of every local SGD

E number of local iterations btw 2 communications
T
E number of communications

pk weight of k-th client; pk  0,
PN

k pk = 1

{xk,l}
nk
l=1 nk training data of k-th client

Fk(·), l(·) local objective, local loss function

⌘t+i learning rate of i-th update at t-th round

⇠kt+i sample uniformly chosen from the local data

wk
t+i local models of k-th client of i-th update at t-th round

Table 3: Notations
24 / 79
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Convergence Analysis of FedAvg

Notations: Data heterogeneity

� = F ⇤
�

NX

k=1

pkF
⇤
k (8)

• F ⇤, F ⇤
k : minimum value of F, Fk

• IE : set of global synchronization steps; IE = {nE|n = 1, 2, . . . }

• t+ 1 2 IE : time step to communication
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Convergence Analysis of FedAvg

Notations: Problem formulation

Local objective

Fk(w) =
1

nk

nkX

j

l(w;xk,j) (9)

Local update

wk
t+i+1  � wk

t+i � ⌘t+irFk(w
k
t+i, ⇠

k
t+i), i = 0, 1, . . . , E � 1

(10)

Aggregation step

wt+E  �
N

K

X

k2St

pkw
k
t+E (11)
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Convergence Analysis of FedAvg

Assumptions

Assumption 1 (L-smooth)

Fk(v)  Fk(w) + (v �w)TrFk(w) +
L

2
kv �wk2, 8v,w (12)

Assumption 2 (µ-strongly convex)

Fk(v) � Fk(w) + (v �w)TrFk(w) +
µ

2
kv �wk2, 8v,w (13)

Assumption 3 (bounded variance of stochastic gradients)

EkrFk(w
k
t , ⇠

k)�rFk(w
k
t )k

2
 �2

k, k = 1, . . . , N (14)

Assumption 4 (uniformly bounded expected L2 norm of stochastic gradients)

EkrFk(w
k
t , ⇠

k)k2  G2, k = 1, . . . , N, t = 1, . . . , T � 1 (15)
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Convergence Analysis of FedAvg

Theorem 1: Convergence when full participation

Theorem 2: Convergence when partial participation (Scheme 1)

Theorem 3: Convergence when partial participation (Scheme 2)

28 / 79
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Convergence Analysis of FedAvg

Theorem 1: Convergence when full participation

Under Assumptions 1 to 4, choose  = L
µ , � = max(8, E),

⌘t =
2

µ(�+t) and then FedAvg satisfies

E[F (wT )]� F ⇤




� + T � 1

✓
2B

µ
+

µ�

2
Ekw1 �w⇤

k
2

◆
, (16)

where B =
NX

k=1

p2k�
2
k + 6L�+ 8(E � 1)2G2. (17)
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Convergence Analysis of FedAvg

Proof sketch of Theorem 1

1. Derive inequality from Lemma 1-3 using �t = Ekw̄t �w⇤
k
2.

2. Prove inequality about �t using induction.

3. Drive final result (Theorem 1 (29)).

30 / 79



Convergence Analysis of FedAvg

Proof sketch of Theorem 1

Lemma 1 Result of one step SGD

Under Assumption 1-2, ⌘t 
1
4L ,� � 0,

Ekv̄t+1 �w⇤
k
2
(1� ⌘tµ)Ekw̄t �w⇤

k
2 + ⌘2tEkgt � ḡtk

2

+ 6L⌘2t�+ 2E
NX

k=1

pkkw̄t �wt
kk

2 (18)

Lemma 2 Bounding the variance

Under Assumption 3,

Ekgt � ḡtk
2


NX

k=1

p2k�
2
k (19)

Lemma 3 Bounding the divergence of {wk
t }

Under Assumption 4, ⌘t is non-increasing, ⌘t  2⌘t+E , 8t � 0

E
"

NX

k=1

pkkw̄t �wt
kk

2

#
 4⌘2t (E � 1)2G2 (20)
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Convergence Analysis of FedAvg

Theorem 2: Convergence when partial participation (Scheme1)

Under Assumptions 1 to 5 and Scheme 1 (random sampling with

replacement), define , �, ⌘t, B from Theorem 1, C = 4
KE2G2

and then FedAvg satisfies

E[F (wT )]� F ⇤




� + T � 1

✓
2(B + C)

µ
+

µ�

2
Ekw1 �w⇤

k
2

◆
.

(21)
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Convergence Analysis of FedAvg

Proof sketch of Theorem 2

1. Derive inequality from Lemma 1-5 using �t = Ekw̄t �w⇤
k
2.

2. Prove inequality about �t using induction.

3. Drive final result (32).
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Convergence Analysis of FedAvg

Proof sketch of Theorem 2

Lemma 4 Unbiased sampling scheme

ESt [w̄t] = v̄t+1, t+ 1 2 IE (22)

Lemma 5 Bounding the variance of w̄t

For t+ 1 2 I, assume ⌘t is non-increasing and ⌘t  2⌘t+E for all t � 0,

the expected di↵erence between v̄t+1 and w̄t+1 is bounded.

(i) Scheme 1,

EStkv̄t+1 � w̄t+1k
2


4

K
⌘2tE

2G2 (23)

(ii) Scheme 2, assume p1 = · · · = pN = 1
N

EStkv̄t+1 � w̄t+1k
2


N �K

N � 1

4

K
⌘2tE

2G2 (24)
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Convergence Analysis of FedAvg

Convergence rate

Under Assumption 2, the dominating term of (29):

O

 PN
k=1 p

2
k�

2
k + L�+

�
1 + 1

K

�
E2G2 + �G2

µT

!
(25)

Let T✏ as the number of required steps to achieve an ✏ accuracy.

T✏

E
/

✓
1 +

1

K

◆
E2G2 +

PN
k=1 p

2
k�

2
k + L�+ G2

E
+G2 (26)
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Convergence Analysis of FedAvg

Theorem 3: Convergence when partial participation (Scheme2)

Under Assumptions 1 to 4 & 6 and Scheme 2 (random sampling

without replacement), define , �, ⌘t, B from Theorem 1,

C = N�K
N�1

4
KE2G2 and then FedAvg satisfies

E[F (wT )]� F ⇤




� + T � 1

✓
2(B + C)

µ
+

µ�

2
Ekw1 �w⇤

k
2

◆
.

(27)
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Convergence Analysis of FedAvg

Theorem 4

With full batch size, E > 1, any fixed (small) learning rate,

kw̄⇤
�w⇤

k2 = ⌦((E � 1)⌘) · kw⇤
k2. (28)

Remarks
Fixed learning rate (⌘t = ⌘) can lead to sub-optimal point when E > 1.
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Convergence Analysis of FedAvg

Experiments 5

Figure 11: Required rounds to obtain an ✏ accuracy [2, 3]

Too large or small number of local updates E leads to slow convergence.
5See Appendix A (75)
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Convergence Analysis of FedAvg

Experiments

Figure 12: Comparisons of global loss over communication rounds

Compared to two di↵erent random sampline schemes (1: w/ replacement,

2: w/o replacement), sampling with replacement performs faster

convergence.
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Convergence Analysis of FedAvg

Take-aways

The performance of federated learning (FedAVG) depends on

various hyperparameters such as:

• data heterogeneity �,

• number of local updates E,

• number of participation clients K,

• sampling scheme,

• dynamic learning rate.
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2.2 FedOpt
ICLR, 2021
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FedOpt [4]

Summary

• Motivation: FedAVG is unsuitable for settings with heavy-tail

stochastic gradient noise distribution.

• Challenges: Client performing multiple local updates, data

heterogeneity, communication costs.

• Approach: It applied adaptive server optimizer to FedAVG

without enlarging convergence rate.

• Contribution: It showed that there’s a relation between

number of clients’ updates and client heterogeneity.
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FedOpt

Notation Description

m total number of clients

Fi(x) loss function of i-th client

Di data distribution of i-th client

�2
l local variance

�2
g global variance (client heterogeneity)

S set of selected clients

xti local model of i-th client at round t, i 2 S

⌘ learning rate

⌧ degree of adaptivity

K number of client updates taken per round

Table 4: FedOpt Notations
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FedOpt

FedOpt Global model x

xt+1 =
1

|S|

X

i2S
xti = xt �

1

|S|

X

i2S
(xt � xti)

= xt + 1 ·�t

where �t
i := xti � xt and �t :=

1
|S|
P

i2S �t
i.

Client optimizer minimizes Fi(x) based on each client’s local data.

Server optimizer minimizes f(x) = 1
m

Pm
i=1 Fi(x).

�t can be a pseudo-gradient.

44 / 79
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FedOpt

Figure 13: FedOpt (1)
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FedOpt

Figure 14: FedOpt (2)

46 / 79

4
8 00

my
second

moment

8



FedOpt

Convergence Analysis of FedOpt

Under assumptions (48) and su�ciently large T = G/L,

�2 = �2
l + 6K�2

g , ⌘l  min
n

1
16L ,

1
T 1/6

⇥
⌧

120L2G

⇤1/3o
,

⌘l = ⇥(1/KL
p
T ), ⌘ = ⇥(

p
Km),

min
0tT�1

Ekrf(xt)k2

= O

✓
f(x0)� f(x⇤)
p
mKT

+
2�2

l L

G2
p
mKT

+
�2

GKT
+

�2L
p
m

G2
p
KT 3/2

◆

(29)
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FedOpt

Convergence Analysis: Assumptions

• Lipschitz gradient of Fi (27)

• Bounded variance �2
l ,�

2
g of Fi (27)

• Bounded gradients of fi (27)

Remarks

• Convergence rate is almost same with FedAVG when T � K.

• Local learning rate ⌘l and its decay are 1p
T
, 1p

t
.

• Communication costs depend on T , which also depends on K.

• For selected sample clients and ⌘ properly, the e↵ect of client

heterogeneity �g can be reduced.
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FedOpt

Experiments 6

FedOpt (FedAdagrad, FedAdam, FedYogi) outperforms other FL

algorithms.

Figure 15: FedOpt results

6see Appendix B (76) for experimental settings.
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3. Challenges



Existing Problems

• In practice, all clients cannot be participated in one

communication stage because of the network bandwidth or

system limitation [2].

• Although it’s possible, training with too many clients in FL

can negatively impact generalization and data-e�ciency [5].

• For communication-e�cient federated learning to achieve

faster convergence, one possible way is focusing informative

clients [6, 7, 8, 9].
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3.1 On Large-Cohort Training
(Impact of number of participating clients)

NeurIPS, 2021
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On Large-Cohort Training for FL [5]

Summary

• Challenge: Cohort size (number of participating clients at

every communication) a↵ects convergence improvements and

generalization.

• Contribution: It showed the empirical findings about the

cohort size.

Key findings

Increasing the cohort size may not lead to significant convergence

improvements in practice.
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On Large-Cohort Training for FL

Problem formulation

Objectives

Minimize a weighted average of client loss functions:

min
x

f(x) :=
KX

k=1

pkfk(x). (30)

Notation Description

K total number of clients

pk weights of client k (number of local data)

fk loss function of client k

Table 5: Notations
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On Large-Cohort Training for FL

Notation Description

C cohort of clients

M cohort size (number of participating clients per round)

E number of local epochs

x server model

xk local model

�k client update (�k := xk � x)

⌘c, ⌘s learning rate of client and server

g gradient estimate

� pseudo-gradient

Table 6: Notations
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On Large-Cohort Training for FL

Experimental results7

Challenges 1) Catastrophic training failures

Training accuracy decreased by a factor of at least 1/2 in a single

round due to data heterogeneity.

Figure 16: Catastrophic training failures (M=10)

7see Appendix B (76) for experiment settings
55 / 79
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On Large-Cohort Training for FL

Experimental results

Challenges 2) Generalization failures

Large cohorts (large participation rate) lead to worse generalization

in some datasets.

Figure 17: Generalization failures

56 / 79



On Large-Cohort Training for FL

Experimental results

Challenges diagnosis

Pseudo-gradient � is an average of nearly orthogonal vectors.

Figure 18: Diagnosing large-cohort challenges
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On Large-Cohort Training for FL

Take-aways

• Large-cohort training for federated learning can negatively

impact generalization and data-e�ciency.

• Clarifying and breaking through impacts of cohort sizes is still

open problem.
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3.2 Client Selection
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Client Selection problem

Client Selection problem

• In practice, all clients cannot be participated in one

communication stage because of the network bandwidth or

system limitation.

• However, only important clients might be helpful for training

because of stragglers or outliers.

Figure 19: Full participation Figure 20: Partial participation
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Client Selection problem

Problem Statement

Client selection problem aims to select some informative clients

from all to show faster convergence at the earlier communication

round to reduce communication cost of Federated Learning.
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Client Selection problem

Related works

1. Loss-based sampling [6, 8]

� selecting clients with high loss value.
+ simple computation

– hyperparameter-sensitive, unexpected impacts of outliers

2. Sample size-based sampling [7]

� selecting clients with large number of local samples.
+ simple computation

– not robust on non-IID setting

3. Similarity-based sampling [9, 7]

� selecting similar or diverse clients based on its gradient.
+ less information redundancy of clients

– ine�cient communication, heavy computation
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DivFL [9]

Summary

• Motivation: For client selection, redundant client information

is ine�cient while selecting clients.

• Approach: For diversity, it finds the best subset to minimize

the gap between gradient information of selected clients and

the whole clients.
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DivFL

Notation Description

Fk(·) loss function of k-th client

rFk gradient on local data of k-th client

N total number of clients

K (maximum) number of selected clients

V the set of total clients (|V | = N)

S the set of selected clients (|S|  K)

�(·) selecting function (V �! S)

vk local model of k-th client (vk 2 V )

T total number of communications

E the number of local SGD updates

⌘ local learning rate

wt, wk global model of t-th round, local model of k-th client

Table 7: Notations
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DivFL

Objective

Di↵erence between gradient information of selected clients and all
clients:

X

k2[N ]

rFk(v
k)

=
X

k2[N ]

h
rFk(v

k)�rF�(k)(v
�(k))

i
+
X

k2S

�krFk(v
k) (31)

)
X

k2[N ]

rFk(v
k)�

X

k2S

�krFk(v
k)

=
X

k2[N ]

h
rFk(v

k)�rF�(k)(v
�(k))

i
(32)
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DivFL

Objective

To minimize the di↵erence between gradient information of
selected clients and the whole clients:

k

X

k2[N ]

rFk(v
k)�

X

k2S

�krFk(v
k)k



X

k2[N ]

krFk(v
k)�rF�(k)(v

�(k))k (33)

k

X

k2[N ]

rFk(v
k)�

X

k2S

�krFk(v
k)k



X

k2[N ]

min
i2S
krFk(v

k)�rFi(v
i)k = G(S) (34)
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DivFL

Objective

To minimize the gap, they minimize the upper bound G(S) of the

approximation error (= to maximize a constant its negation: Ḡ(S)).

Diverse Client Selection

To find the best subset S,

max
S

[Ḡ(S) = C �
X

k2[N ]

min
i2S
krFk(v

k)�rFi(v
i)k] (35)

where Ḡ(S) = C �G(S). (36)

We call this Ḡ(·) as submodular function 8.

8See Appendix D.1 (78) for details.
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DivFL

Greedy selection for Objective

S  S [ k⇤, k⇤ 2 arg max
k2V \S

[Ḡ(S)� Ḡ({k} [ S)] (37)

where a accelerated greedy algorithm (stochastic-greedy 9) was

used.

9STOCHASTIC-GREEDY algorithm [10] is a linear-time algorithm for

maximizing a non-negative monotone submodular function subject to a

cardinality constraint k. See Appendix D.2 (79) for details.
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DivFL
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DivFL

Experiments 10

Figure 21: Performance over communication rounds on FedEMNIST

10See Appendix C (77) for experimental setting.
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DivFL

Experiments

Figure 22: Performance over communication rounds on CelebA dataset
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4. Conclusion



Conclusion

Summary

Federated Learning is privacy-preserving machine learning in

distributed setting

The performance of federated learning depends on ...

• number of local updates

• local batch size

• data heterogeneity

• total communication rounds

• number of participating clients per round
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Appendix A

Experimental setting of FedAVG

MNIST

• Task: image classification

• Model: MLP(with 2-hidden layers with 200 units each using

ReLu activations), CNN(with two 5x5 convolution layers (the

first with 32 channels, the second with 64, each followed with

2x2 maxpooling),a fully connected layer with 512 units and

ReLu activation, and a final softmax output layer(1,663,370

total parameters)

• Partition: IID(balanced), Non-IID(by dividing the data it into

200 shards of size 300, and assign each of 100 clients 2

shards, then most clients only have examples of two digits.)



Appendix B

Experimental setting of FedOpt, LargeCohort

Dataset Clients Examples Model

(train/test) (train/test)

CIFAR100 500/100 50,000/10,000 ResNet-18 w. GN

FedEMNIST 3,400/3,400 671,585/77,483 2-CNN w. dropout,

max-pooling, 2 fc layers

ShakeSpeare 715/715 16,068/2,356 2-LSTM

Stack Overflow 342,477/204,088 135,818,730 1-LSTM

/16,586,035

Hyperparameters Values Hyperparameters Values

E 1 ⌘c, ⌘s {10i|� 3  i  1}
M 50 B 20, 20, 4, 32

T 1,500



Appendix C

Experimental setting of DivFL

FedEMNIST dataset

• Total 500 clients where each client contains 3 out of 10

lowercase handwritten characters.

• Task: image classification with 62 classes.

• Model: CNN with two 5x5-convolutional and 2x2-maxpooling

(with a stride of 2) layers followed by a dense layer with 128

activations.

CelebA dataset

• Total 515 clients (Leaf [11] base).

• Task: image binary classification (whether it’s smiling or not).

• Model: CNN with 4 3x3-convolutional and 2x2-maxpooling

layers followed by a dense layer.



Appendix D.1

submodular function

A function f : 2V �! R assigns a subset A ✓ V a utility value

f(A),

f(A [ {i})� f(A) � f(B [ {i})� f(B) (38)

for any A ✓ B ✓ V and i 2 V \B.

We can regard f(A [ {i})� f(A) as the marginal gain of adding

a new element i to A.



Appendix D.2

STOCHASTIC-GREEDY algorithm [10]


