
Namhoon Lee
University of Oxford

November 2019

Compression of random neural networks:
A signal propagation perspective

A challenge in deep learning: Overparameterization

Large neural networks require: Critical to resource constrained environments

real-time tasks
e.g., autonomous car

embedded systems
e.g., mobile devices

memory & computations power consumption

Network compression
The goal is to reduce the size of neural network without compromising accuracy.

big
small

~ same accuracy

Approaches

● Network pruning
: reduce the number of parameters

● Network quantization
: reduce the precision of parameters

Others: knowledge distillation, conditional computation, etc.

Approaches

● Network pruning
: reduce the number of parameters

● Network quantization
: reduce the precision of parameters

Others: knowledge distillation, conditional computation, etc.

Network pruning

Different forms

● Parameters (weights, biases)

● Activations (neurons)

can be done structured way
(e.g., channel, filter, layer)

Different principles

● Magnitude based

● Hessian based

● Bayesian

Network pruning

Different forms

● Parameters (weights, biases)

● Activations (neurons)

can be done structured way
(e.g., channel, filter, layer)

⇒ remove > 90% parameters

Different principles

● Magnitude based

● Hessian based

● Bayesian

Example: Han et al. (2015)

● Hyperparameters with weakly-grounded heuristics (e.g., stochastic pruning [2])

● Architecture specific requirements (e.g., conv/fc separate prune [1])

● Optimization difficulty (e.g., convergence [3, 6])

● Pretraining ([1,2,3,4,5,6])

● Iterative prune -- retrain cycle

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

● Hyperparameters with weakly-grounded heuristics (e.g., stochastic pruning [2])

● Architecture specific requirements (e.g., conv/fc separate prune [1])

● Optimization difficulty (e.g., convergence [3, 6])

● Pretraining ([1,2,3,4,5,6])

● Iterative prune -- retrain cycle

 ⇒ Complex and non-scalable

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

No hyperparameters

No iterative prune -- retrain cycle

No pretraining

No large data

We want ..

No hyperparameters

No iterative prune -- retrain cycle

No pretraining

No large data

We want ..

Single-shot pruning prior to training

SNIP: Single-shot Network Pruning
based on Connection Sensitivity

Namhoon Lee, Thalaiyasingam Ajanthan, Philip Torr
International Conference on Learning Representations (ICLR) 2019

Objective

● Identify important parameters in the network and remove unimportant ones

● Directly optimizing with a sparsity enforcing regularization term is possible,
but can be difficult.

Idea

● Measure the effect of removing each parameter on the loss

● The greedy way is prohibitively expensive to perform:

SNIP

The effect on the loss can be approximated by

1. auxiliary variables representing the connectivity of parameters

2. derivative of the loss w.r.t. these indicator variables

SNIP
1. Introduce c

SNIP
1. Introduce c

SNIP
1. Introduce c

2. Derivative w.r.t. c

SNIP
1. Introduce c

2. Derivative w.r.t. c

● ∂L/∂cj is an infinitesimal version of ∆Lj
● measures the rate of change of L w.r.t. infinitesimal change in cj from 1 → 1 − δ
● computed efficiently in one forward-backward pass using auto differentiation, for all j at once

Reference: Understanding black-box predictions via influence functions, Koh & Liang. ICML’17

(∂L/∂c)
limδ→0 (L(c ☉ w) - L(c ☉ w - δej ☉ w)) / δ |c=1
→ perturbing the parameter wj by the scaled amount δwj

(∂L/∂w)
limδ→0 (L(c ☉ w) - L(c ☉ w - c ☉ δej)) / δ |c=1
→ perturbing the parameter wj by the absolute amount δ

(example)
m=3, j=2 → [w1, w2 - δw2, w3] vs. [w1, w2 - δ, w3]

⇒ This can alleviate the dependency on the weights when computing CS.

Difference between ∂L/∂c and ∂L/∂w

SNIP
1. Introduce c

2. Derivative w.r.t. c

3. Connection sensitivity

Pruning at initialization
● Measure CS on untrained networks prior to training

→ Or zero gradients at pretrained

● Sample weights from a dist. with architecture aware variance
→ Ensure the variance of weights to remain throughout the network (Glorot and Bengio, 2010)

● Alleviate the dependency on the weights when computing CS
→ Remove the pretraining requirement, architecture dependent hyperparameters

LeNets

LeNets

LeNets: comparison to SOTA

LeNets: comparison to SOTA

LeNets: comparison to SOTA

LeNets: comparison to SOTA

LeNets: comparison to SOTA

Various architectures & models

Various architectures & models

Various architectures & models

Various architectures & models

Which parameters are being pruned?
Consider: LeNet-300-100 (wl=1 ∈ R784×300)

Steps:

1. Curate a mini-batch of examples
2. Compute the connection sensitivity
3. Prune: create the mask c
4. Visualize c for the first layer

(i.e., cl=1 ∈ {0,1}784×300 → R784 → R28×28)

Which parameters are being pruned?
Consider: LeNet-300-100 (wl=1 ∈ R784×300)

Steps:

1. Curate a mini-batch of examples
2. Compute the connection sensitivity
3. Prune: create the mask c
4. Visualize c for the first layer

(i.e., cl=1 ∈ {0,1}784×300 → R784 → R28×28)

The parameters outside the digit tend to be pruned away, letting the network to
receive information selectively from a distinctive region.

The input was digit 8.

Which parameters are being pruned?

The parameters connected to the discriminative part of image are retained.

sparsity

Which parameters are being pruned?

Which parameters are being pruned?

Carrying out such inspection is not straightforward with other methods.

Prevent memorization

[Fitting random labels]
Understanding deep learning requires

rethinking generalization, Zhang et al. ICLR’17

The pruned network does not have sufficient capacity to fit the random labels,
but is capable of performing the task.

SNIP

Paper:
https://arxiv.org/abs/1810.02340

Code:
https://github.com/namhoonlee/snip-public

Contact:
http://www.robots.ox.ac.uk/~namhoon/

https://arxiv.org/abs/1810.02340
https://github.com/namhoonlee/snip-public
http://www.robots.ox.ac.uk/~namhoon/

A signal propagation perspective for
pruning neural networks at initialization

Namhoon Lee1, Thalaiyasingam Ajanthan2, Stephen Gould2, Philip Torr1

1University of Oxford, 2Australian National University

Designing pruning algorithms has been often purely based on ad-hoc intuition
lacking rigorous underpinning, partly because pruning was typically carried out
after training the model as a post-processing step or interwove with the training
procedure, without adequate tools to analyze.

Network pruning

Motivation
Recently, Lee et al. (2019) have shown that pruning can be done on randomly
initialized neural networks in a single-shot prior to training (i.e., pruning at
initialization). They empirically showed that as long as the initial random weights
are drawn from appropriately scaled Gaussians (e.g., Glorot & Bengio (2010)),
their pruning criterion called connection sensitivity can be used to prune deep
neural networks, often to an extreme level of sparsity while maintaining good
accuracy once trained.

However, it remains unclear as to why pruning at initialization is effective, how it
should be understood theoretically and whether it can be extended further.

Motivation
Recently, Lee et al. (2019) have shown that pruning can be done on randomly
initialized neural networks in a single-shot prior to training (i.e., pruning at
initialization). They empirically showed that as long as the initial random weights
are drawn from appropriately scaled Gaussians (e.g., Glorot & Bengio (2010)),
their pruning criterion called connection sensitivity can be used to prune deep
neural networks, often to an extreme level of sparsity while maintaining good
accuracy once trained.

However, it remains unclear as to why pruning at initialization is effective, how it
should be understood theoretically and whether it can be extended further.

Motivation
Recently, Lee et al. (2019) have shown that pruning can be done on randomly
initialized neural networks in a single-shot prior to training (i.e., pruning at
initialization). They empirically showed that as long as the initial random weights
are drawn from appropriately scaled Gaussians (e.g., Glorot & Bengio (2010)),
their pruning criterion called connection sensitivity can be used to prune deep
neural networks, often to an extreme level of sparsity while maintaining good
accuracy once trained.

However, it remains unclear as to why pruning at initialization is effective, how it
should be understood theoretically and whether it can be extended further.

Observations

Effect of initialization on pruning: Setup

Variance scaling initialization schemes (VS-{L, G, H}):
σ → (α / ψl) σ, where ψl is a layerwise scalar that depends on an architecture specification
(e.g., fan-in), and α is a global scalar.

Network with layers of the same width:
the variance can be controlled by a single scalar γ = α / ψ as ψl = ψ for all layers l.

Effect of initialization on pruning: Setup

Variance scaling initialization schemes (VS-{L, G, H}):
σ → (α / ψl) σ, where ψl is a layerwise scalar that depends on an architecture specification
(e.g., fan-in), and α is a global scalar.

Network with layers of the same width:
the variance can be controlled by a single scalar γ = α / ψ as ψl = ψ for all layers l.

Consider:
Linear and tanh MLP networks of K = 7 and N = 100 on MNIST with σ = 1 as the default,
similar to Saxe et al. (2014).

Experiments:
Initialize with different γ, compute CS, prune, and then visualize c.

Effect of initialization on pruning: Setup

Effect of initialization on pruning: Results

Effect of initialization on pruning: Results

(each box) the pruning mask cl ∈ {0,1}100x100

Effect of initialization on pruning: Results

For the linear network, parameters are pruned uniformly throughout the network.

Effect of initialization on pruning: Results

For the tanh case, more parameters tend to be pruned in the later layers.

Effect of initialization on pruning: Results

For the tanh case, more parameters tend to be pruned in the later layers.

Effect of initialization on pruning: Results

When pruning for a high sparsity level (e.g., 90%), this becomes critical and leads
to poor learning capability as there are only a few parameters left in later layers.

Effect of initialization on pruning: Results

 Pruning patterns (c) Parameter sensitivity scores (CS)

Effect of initialization on pruning: Results

CS tends to decrease towards the later layers

Effect of initialization on pruning: Results

CS tends to decrease towards the later layers → choosing the top-κ globally

Effect of initialization on pruning: Results

CS tends to decrease towards the later layers → choosing the top-κ globally

Effect of initialization on pruning: Results

CS tends to decrease towards the later layers → choosing the top-κ globally

Effect of initialization on pruning: Results

CS tends to decrease towards the later layers → choosing the top-κ globally

Effect of initialization on pruning: Results

CS tends to decrease towards the later layers → choosing the top-κ globally →
parameters distributed non-uniformly and sparsely towards the end of the network.

Effect of initialization on pruning: Results

The initial weights have a crucial effect on CS and pruning results.

Effect of initialization on pruning: Results

The initial weights have a crucial effect on CS and pruning results. But why?

Poor signal propagation → unreliable CS
We posit that the unreliability of CS is due to the poor signal propagation:
an initialization that projects the input signal to be strongly amplified or attenuated
in the forward pass will saturate the error signal under backpropagation (i.e.,
gradients), and hence will result in poorly calibrated sensitivity scores across
layers, which will eventually lead to poor pruning results.

Poor signal propagation → unreliable CS
We posit that the unreliability of CS is due to the poor signal propagation:
an initialization that projects the input signal to be strongly amplified or attenuated
in the forward pass will saturate the error signal under backpropagation (i.e.,
gradients), and hence will result in poorly calibrated sensitivity scores across
layers, which will eventually lead to poor pruning results.

Poor signal propagation → unreliable CS
We posit that the unreliability of CS is due to the poor signal propagation:
an initialization that projects the input signal to be strongly amplified or attenuated
in the forward pass will saturate the error signal under backpropagation (i.e.,
gradients), and hence will result in poorly calibrated sensitivity scores across
layers, which will eventually lead to poor pruning results.

Poor signal propagation → unreliable CS
We posit that the unreliability of CS is due to the poor signal propagation:
an initialization that projects the input signal to be strongly amplified or attenuated
in the forward pass will saturate the error signal under backpropagation (i.e.,
gradients), and hence will result in poorly calibrated sensitivity scores across
layers, which will eventually lead to poor pruning results.

Gradient signal in connection sensitivity
Decompose the connection sensitivity metric:

Gradient signal in connection sensitivity
Decompose the connection sensitivity metric:

Considering ∂L/∂cj for a given j, since wj does not depend on any other layers or
signal propagation, the only term that depends on signal propagation in the
network is the gradient term ∂L/∂wj.

Decompose the connection sensitivity metric:

Considering ∂L/∂cj for a given j, since wj does not depend on any other layers or
signal propagation, the only term that depends on signal propagation in the
network is the gradient term ∂L/∂wj.

Hence, a necessary condition to ensure reliable ∂L/∂c (and connection sensitivity)
is that the gradients ∂L/∂w need to be faithful.

Gradient signal in connection sensitivity

Layerwise dynamical isometry

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.

Dynamical isometry & mean field theory

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.

Dynamical isometry & mean field theory

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.

Mean field theory is used to develop a theoretical understanding of signal
propagation in neural networks with random parameters (Poole et al., 2016).
Precisely, the mean field approximation states that preactivations of wide,
untrained neural networks can be captured as a Gaussian distribution;
E.g., a maximum depth through which signals can propagate at initialization;
networks are trainable when signals can travel all the way through them
(Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao et al., 2018).

Dynamical isometry & mean field theory

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.

Mean field theory is used to develop a theoretical understanding of signal
propagation in neural networks with random parameters (Poole et al., 2016).
Precisely, the mean field approximation states that preactivations of wide,
untrained neural networks can be captured as a Gaussian distribution;
E.g., a maximum depth through which signals can propagate at initialization;
networks are trainable when signals can travel all the way through them
(Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao et al., 2018).

Dynamical isometry & mean field theory

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.

Mean field theory is used to develop a theoretical understanding of signal
propagation in neural networks with random parameters (Poole et al., 2016).
Precisely, the mean field approximation states that preactivations of wide,
untrained neural networks can be captured as a Gaussian distribution;
E.g., a maximum depth through which signals can propagate at initialization;
networks are trainable when signals can travel all the way through them
(Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao et al., 2018).

Dynamical isometry & mean field theory

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.

Mean field theory is used to develop a theoretical understanding of signal
propagation in neural networks with random parameters (Poole et al., 2016).
Precisely, the mean field approximation states that preactivations of wide,
untrained neural networks can be captured as a Gaussian distribution;
E.g., a maximum depth through which signals can propagate at initialization;
networks are trainable when signals can travel all the way through them
(Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao et al., 2018).

Dynamical isometry & mean field theory

Depth scale

Gradients in terms of Jacobians

Gradients in terms of Jacobians

Consider layerwise Jacobian:

Then, it is sufficient to have layerwise dynamical isometry in order to ensure faithful signal
propagation in the network.

This would guarantee that the signal from layer l to l − 1 (or vice versa) is propagated without
amplification or attenuation in any of its dimension.

Layerwise dynamical isometry: Ensuring faithful gradients

Layerwise dynamical isometry: Ensuring faithful gradients

Recall,
1. a network is pruned with a global threshold based on connection sensitivity.
2. the connection sensitivity is the gradients scaled by the weights.

⇐⇒ CS scores across layers need to be of the same scale
⇐⇒ Require the gradients to be faithful and the weights to be of the same scale
for all layers.

This condition is trivially satisfied with the layerwise dynamical isometry, as each
layer is initialized identically (i.e., orthogonal initialization).

While CS pruning is robust to moderate changes in JSV, it fails catastrophically
when the condition number is very large (> 1e+11).

Interpreting failure cases from signal propagation perspective

Signal propagation on sparse networks
and their training behaviors

How do signals propagate in the sparse network?
Experiments:

Step 1: Initialize a network (VS or LDI).
Step 2: Prune for a sparsity level κ based on connection sensitivity.
Step 3: (optional) Enforce approximate dynamical isometry, if specified.
Step 4: Train the pruned sparse network using SGD.

● We measure signal propagation on the sparse network right before Step 4,
and observe training behavior during Step 4.

● {A}-{B}-{C} for {initialization}-{pruning}-{approximate isometry}.

Signal propagation and trainability

Signal propagation and trainability

Approximate dynamical isometry
Q: What if we can repair the broken isometry, before training the pruned network,
such that we can achieve trainability comparable to that of the dense network?
Precisely, we consider the following:

Given the sparsity topology C and initial weights W, this data-free spectral method
attempts to find an optimal W*, such that the combination of the sparse topology
and the weights to be layerwise orthogonal, potentially to the full rank capacity.

Signal propagation and trainability

● Pruning breaks dynamical isometry, and the more a network is pruned, the weaker
signal propagation becomes on the pruned sparse network.

● The better a network propagates signals, the faster it converges during training.

● Enforcing approximate isometry recovers signal propagation on sparse networks, which
in turn improves the training performance of sparse networks quite significantly.

● In addition to signal propagation, the structure (the choice of pruning method) and the
number of parameters (sparsity level) also affect trainability of sparse neural networks.

Key points

Validation and extensions: Modern networks

● The first and second best results are highlighted in each column of errors.
● The orthogonal initialization with enforced approximate isometry method

achieves the best results across all tested architectures.

Validation and extensions: Nonlinearities

● The first and second best results are highlighted in each column of errors.
● The orthogonal initialization consistently outperforms variance scaling

methods across different nonlinear activation functions.

Validation and extensions: Unsupervised pruning

Validation and extensions: Transfer of sparsity

Validation and extensions: Architecture sculpting

● (Observation) The initial weights have a critical impact on connection sensitivity, and
hence pruning results.

● (Layerwise dynamical isometry) A formal characterization of a sufficient condition to
ensure faithful signal propagation in a network.

● (Signal propagation and trainability of sparse networks) pruning breaks dynamical
isometry and degrades trainability; a simple method to recover signal propagation and
enhance trainability of the compressed network.

● (Validation and extensions) A range of experiments to verify that the effectiveness of
signal propagation perspective for pruning at initialization.

Summary

Towards “winning lottery ticket”

The results on the increased trainability of compressed neural networks can take
us one step towards finding “winning lottery ticket” (i.e., a set of initial weights that
given a sparse topology can quickly reach to a generalization performance that is
comparable to the uncompressed network, once trained) suggested in Frankle &
Carbin (2019).

● While we produce (quickly) trainable sparse networks, the two-stage orthogonalization
process can be suboptimal, especially at high sparsity.

● Weights change during training affecting signal propagation, and hence, dynamical
isometry may not continue to hold over the course of training.

● A potential key to network compression is to address the complex interplay between
optimization and signal propagation, and it might be immensely beneficial if an
optimization naturally takes place in the space of isometry.

Limitations & future work

