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A challenge in deep learning: Overparameterization

Large neural networks require: Critical to resource constrained environments

memory & computations power consumption embedded systems real-time tasks
e.g., mobile devices e.g., autonomous car



Network compression

The goal is to reduce the size of neural network without compromising accuracy.

- small

big

~ Same accuracy



Approaches

e Network pruning
: reduce the number of parameters

e Network quantization
. reduce the precision of parameters

Others: knowledge distillation, conditional computation, etc.



Approaches

e Network pruning
: reduce the number of parameters




Network pruning

Different forms Different principles
e Parameters (weights, biases) e Magnitude based
e Activations (neurons) e Hessian based

e Bayesian

can be done structured way
(e.g., channel, filter, layer)



Network pruning

Different forms Different principles
e Parameters (weights, biases) e Magnitude based
e Activations (neurons) e Hessian based

e Bayesian

can be done structured way
(e.g., channel, filter, layer)

= remove > 90% parameters




Example: Han et al.
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Abstract

Neural networks are both computationally intensive and memory intensive, making
them difficult to deploy on embedded systems. Also, conventional networks fix
the architecture before training starts; as a result, training cannot improve the
architecture. To address these limitations, we describe a method to reduce the
storage and computation required by neural networks by an order of magnitude
without affecting their du,urdl,y by lwmng only the important connections. Our
method prunes di ions using a three-step method. First, we train
the network to learn Whl(.h connections are important. Next, we prune the unim-
portant connections. Finally, we retrain the network to fine tune the weights of the
remaining connections. On the ImageNet dataset, our method reduced the number
of parameters of AlexNet by a factor of 9%, from 61 million to 6.7 million, without
incurring accuracy loss. Similar experiments with VGG-16 found that the total
number of parameters can be reduced by 13x, from 138 million to 10.3 million,
again with no loss of accuracy.
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Drawbacks in existing approaches

e Hyperparameters with weakly-grounded heuristics (e.g., stochastic pruning [2])
e Architecture specific requirements (e.g., conv/fc separate prune [1])

e Optimization difficulty (e.g., convergence [3, 6])

e Pretraining ([1,2,3,4,5,6])

e lterative prune -- retrain cycle

References

[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15

[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.

[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML'17.

[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through LO Regularization, Louizos et al. ICLR'18
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e Hyperparameters with weakly-grounded heuristics (e.g., stochastic pruning [2])
e Architecture specific requirements (e.g., conv/fc separate prune [1])

e Optimization difficulty (e.g., convergence [3, 6])

e Pretraining ([1,2,3,4,5,6])

e lterative prune -- retrain cycle

= Complex and non-scalable

References
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No hyperparameters
We Wa nt No iterative prune -- retrain cycle
No pretraining

No large data



No hyperparameters

No iterative prune -- retrain cycle
We want ..

No pretraining

No large data

Single-shot pruning prior to training
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Obijective

e Identify important parameters in the network and remove unimportant ones

min L(w; D) = min — oW (%5, %%))
i nZ yi)

w

st. weR™ |wlo<k.

e Directly optimizing with a sparsity enforcing regularization term is possible,
but can be difficult.



|dea

e Measure the effect of removing each parameter on the loss

AL;(w; D) = L(1 © w; D) — L((1 — e;) © w; D)

e The greedy way is prohibitively expensive to perform: O(m!)



SNIP

The effect on the loss can be approximated by

1. auxiliary variables representing the connectivity of parameters

2. derivative of the loss w.r.t. these indicator variables



SNIP
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1. Introduce ¢ min L(c ® w; D) = min = Ze(c O w; (x4,Yi))
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SNIP

1 n
1. Introduce ¢ min L(c ® w; D) = min — E U(c O w;(xi,¥4)) ,
c,w c,w T
=1

st. weR™,
cc {Ov l}m’ ||CHO <K,

2. Derivative w.r.t. c

0L(c ® w; D) L(c®w;D) — L((c — d e;)|®© w; D)
60]' 0—0 0

AL;(w;D) = g;(w; D) =

e JL/acjis an infinitesimal version of ALj
e measures the rate of change of L w.r.t. infinitesimal change in cjfrom1 —1 -0
e computed efficiently in one forward-backward pass using auto differentiation, for all j at once

Reference: Understanding black-box predictions via influence functions, Koh & Liang. ICML’17



Difference between dL/dc and JdL/ow

(dL/ac)
lim,_ (L(c ©w)-L(c O w- 6ej Ow))/d |,
— perturbing the parameter w, by the scaled amount 5WJ.

(dL/ow)
lim,  (L(c ©w)-LlcOw-c O 6ej))/6 | o=
— perturbing the parameter w, by the absolute amount &

(example)
m=3, j=2 — [W1, W, - 6w2, W3] VS. [W1, W, - 0, W3]

= This can alleviate the dependency on the weights when computing CS.



SNIP

1. Introduce ¢

2. Derivative w.r.t. c

ALj(w;D) ~ g;(w;D) =

3. Connection sensitivity

. * 1 n
r(rjglL(c Ow;D) = I(I:lgl - ;E(C O wy (x5 1)) 5

st. weR™,
cc {07 1}m7 ||CHO <K,
OL(c ® w; D) . L(coOw;D)—L((c—de;) ©w; D)
= lim

aCj - §—0 )

__lywD)
= — .
! > k=1 |9k(W; D)




Algorithm 1 SNIP: Single-shot Network Pruning based on Connection Sensitivity

Require: Loss function L, training dataset D, sparsity level « > Refer Equation 3
Ensure: ||w*|o <&
l: w VananceScahngImtlahzatlon > Refer Section 4.2
2 D¥ ={(xi,¥:)} oy ~D > Sample a mini-batch of training data
.7yb
3: 85 ZZIZ? g:’(ljv ;),Ilpb” , Vje{l...m} > Connection sensitivity
4: § < SortDescending(s)
5: ¢+ 1[s; — 5§, 20], Vje{l...m} > Pruning: choose top-« connections
6: W* <— argmingcgm L(c © w; D) > Regular training
7. W4—cOW"




Pruning at initialization

e Measure CS on untrained networks prior to training

— Or zero gradients at pretrained

e Sample weights from a dist. with architecture aware variance

— Ensure the variance of weights to remain throughout the network (Glorot and Bengio, 2010)

e Alleviate the dependency on the weights when computing CS

— Remove the pretraining requirement, architecture dependent hyperparameters
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LeNets: comparison to SOTA

Method Ciitesion LeNet-300-100 LeNet-5-Caffe Ploicin.  ¥Pine Additional Augment Arch.
K (%) err. (%) K (%) err. (%) hyperparam. objective constraints
Ref. - - 1.7 - 0.9 - - - - -
LWC Magnitude 91.7 1.6 91.7 0.8 v many v X v
DNS Magnitude 98.2 2.0 99.1 0.9 v many v X v
B & Magnitude 99.0 B2 99.0 (i v many v v X
SWS Bayesian 95.6 1.9 99.5 1.0 v soft v v X
SVD Bayesian 98.5 1.9 99.6 0.8 v soft v v X
OBD Hessian 92.0 2.0 92.0 247 v many v X X
L-OBS Hessian 98.5 2.0 99.0 24 v many v X v
Connection 95.0 1.6 98.0 0.8
SNIP (ours)  oonsitivity ~ 98.0 2.4  99.0 1.3 A : X X X
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Various architectures & models

Architecture Model Sparsity (%) # Parameters Error (%) A
AlexNet-s 90.0 5.Im — 507k 14.12 — 14.99 +0.87
AlexNet-b 90.0 8.5m — 849k 13.92 — 14.50 +0.58
Convolutional VGG-C 95.0 10.5m — 526k 6.82 — 7.27 40.45
VGG-D 95.0 15.2m — 762k 6.76 — 7.09 +40.33
VGG-like 97.0 15.0m — 449k 8.26 — 8.00 —-0.26
WRN-16-8 95.0 10.0m — 548k 6.21 —» 6.63 +0.42
Residual WRN-16-10 95.0 17.1lm — 856k 591 - 6.43 +4+0.52
WRN-22-8 95.0 17.2m — 858k 6.14 —- 5.85 —-0.29
LSTM-s 95.0 137k — 6.8k 1.88 —» 157 -0.31
O LSTM-b 95.0 535k — 26.8k 1.15— 135 +0.20
GRU-s 95.0 104k — 5.2k 1.87 — 241 +40.54
GRU-b 95.0 404k — 20.2k 1.71 —» 152 —-0.19
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Which parameters are being pruned?

Consider: LeNet-300-100 (w_, € R784x300y

Steps:

1. Curate a mini-batch of examples
2. Compute the connection sensitivity
3. Prune: create the mask c

4. Visualize c for the first layer

(i_e_, C|:1 = {0’1}784><300 N R784 N R28x28 )



Which parameters are being pruned?

Consider: LeNet-300-100 (w_, € R784x300y

Steps:

1. Curate a mini-batch of examples
2. Compute the connection sensitivity
3. Prune: create the mask c

4. Visualize c for the first layer

(i_e_, C|:1 e {0,1}784><300 N R784 N R28x28 )

The input was digit 8.

The parameters outside the digit tend to be pruned away, letting the network to
receive information selectively from a distinctive region.




Which parameters are being pruned?

sparsity

L SISSISIAIN
fcooonn
J U A RTRE
80 G G O
STLLL Lt
,ﬁﬁﬂﬁﬂm
;__.w.-qhumuﬂm%
-

(b) Fashion-MNIST

O G GmlGmia) o)

Selolo o oo
SIS/~
SRR
SSSHSSSN
0 G D 2
SCEL Ik
R R
SNSRI~
N
SISIS[S[SIS[S

The parameters connected to the discriminative part of image are retained.




Which parameters are being pruned?

D2 =1 D’ =10 |D’| =100 |D®|=1000 |D®| = 10000 | train set
(1.94%) (1.72%) (1.64%) (1.56%) (1.40%) =



Which parameters are being pruned?

D2 =1 D°| =10 |D?| =100 |D°|=1000 |D°|= 10000 | trainset
(1.94%) (1.72%) (1.64%) (1.56%) (1.40%) =

Carrying out such inspection is not straightforward with other methods.



Prevent memorization

2.5

— [Fitting random labels]
Understanding deep learning requires
2.0F rethinking generalization, Zhang et al. ICLR’17
= true labels
= true labels (prune)
n 1o == random labels
8 = random labels + reg
— 1.0k === random labels (prune)
0.5
0.0

0 5 10 15 20 25 30
Iteration (x103)

The pruned network does not have sufficient capacity to fit the random labels,
but is capable of performing the task.




Paper:
https://arxiv.org/abs/1810.02340

SN I P Code:

https://github.com/namhoonlee/snip-public

Contact:
http://www.robots.ox.ac.uk/~namhoon/
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Network pruning

Designing pruning algorithms has been often purely based on ad-hoc intuition
lacking rigorous underpinning, partly because pruning was typically carried out
after training the model as a post-processing step or interwove with the training
procedure, without adequate tools to analyze.



Motivation

Recently, Lee et al. (2019) have shown that pruning can be done on randomly
initialized neural networks in a single-shot prior to training (i.e., pruning at
initialization). They empirically showed that as long as the initial random weights
are drawn from appropriately scaled Gaussians (e.g., Glorot & Bengio (2010)),
their pruning criterion called connection sensitivity can be used to prune deep
neural networks, often to an extreme level of sparsity while maintaining good
accuracy once trained.

However, it remains unclear as to why pruning at initialization is effective, how it
should be understood theoretically and whether it can be extended further.
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Motivation

Recently, Lee et al. (2019) have shown that pruning can be done on randomly
initialized neural networks in a single-shot prior to training (i.e., pruning at
initialization). They empirically showed that as long as the initial random weights
are drawn from appropriately scaled Gaussians (e.g., Glorot & Bengio (2010)),
their pruning criterion called connection sensitivity can be used to prune deep
neural networks, often to an extreme level of sparsity while maintaining good
accuracy once trained.

However, it remains unclear as to why pruning at initialization is effective, how it
should be understood theoretically and whether it can be extended further.




Observations



Effect of initialization on pruning: Setup

Problem setup. Consider a fully-connected, feed-forward neural network with weight matrices
W! € RVXN "biases b! € RY, pre-activations h! € R, and post-activations x! € R, for | €
{1... K} upto K layers. Now, the feed-forward dynamics of a network can be written as,

xl — Qb(hl) ’ hl - Wlxl—l s bl , (2)

where ¢ : R — R is an elementwise nonlinearity, and the input is denoted by x°. Given the network
configuration, the parameters are initialized by sampling from a probability distribution, typically a
zero mean Gaussian with scaled variance (LeCun et al., 1998; Glorot & Bengio, 2010).



Effect of initialization on pruning: Setup

Variance scaling initialization schemes (VS-{L, G, H}):
o — (a/y,) o, where y, is a layerwise scalar that depends on an architecture specification
(e.g., fan-in), and a is a global scalar.

Network with layers of the same width:
the variance can be controlled by a single scalary = a/ y as y, = y for all layers I.



Effect of initialization on pruning: Setup

Variance scaling initialization schemes (VS-{L, G, H}):

o — (a/y,) o, where y, is a layerwise scalar that depends on an architecture specification
(e.g., fan-in), and a is a global scalar.

Network with layers of the same width:
the variance can be controlled by a single scalary = a/ y as y, = y for all layers I.

Consider:

Linear and tanh MLP networks of K=7 and N = 100 on MNIST with o = 1 as the default,
similar to Saxe et al. (2014).

Experiments:
Initialize with different y, compute CS, prune, and then visualize c.



Effect of initialization on pruning: Results

K linear (K=7)




Effect of initialization on pruning: Results

(each box) the pruning mask ¢, € {0,1}%%1%



Effect of initialization on pruning: Results

K linear (K=7)
10  "'“’“ R

oEEE

2 3 4 5 6
layer

For the linear network, parameters are pruned uniformly throughout the network.



Effect of initialization on pruning: Results

Kk  linear (K=7)

30
50
70
90

tanh (K=T7)

2 3 4 5 6 2 3.4 5 6
layer layer

For the tanh case, more parameters tend to be pruned in the later layers.



Effect of initialization on pruning: Results

K linear (K=7)
30

tanh (K=T7)
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For the tanh case, more parameters tend to be pruned in the later layers.



Effect of initialization on pruning: Results

K linear (K=7)
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50 &
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o SR R

2 3 4 5 6 2 3.4 5 6
layer layer

tanh (K'=7)

When pruning for a high sparsity level (e.g., 90%), this becomes critical and leads
to poor learning capability as there are only a few parameters left in later layers.



Effect of initialization on pruning: Results

K linear (K=7) tanh (K=7)
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Effect of initialization on pruning: Results

K linear (K=7)
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Poor signal propagation — unreliable CS

We posit that the unreliability of CS is due to the poor signal propagation:

an initialization that projects the input signal to be strongly amplified or attenuated
in the forward pass will saturate the error signal under backpropagation (i.e.,
gradients), and hence will result in poorly calibrated sensitivity scores across
layers, which will eventually lead to poor pruning results.
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Considering dL/ocj for a given j, since w, does not depend on any other layers or
signal propagation, the only term that depends on signal propagation in the
network is the gradient term 8L/awj.



Gradient signal in connection sensitivity

Decompose the connection sensitivity metric:

oc 8(0 © W) ce=1 ow

c=1

Considering dL/ocj for a given j, since w, does not depend on any other layers or
signal propagation, the only term that depends on signal propagation in the
network is the gradient term 8L/awj.

Hence, a necessary condition to ensure reliable dL/dc (and connection sensitivity)
is that the gradients dL/dw need to be faithful.




Layerwise dynamical isometry



Dynamical isometry & mean field theory

Dynamical isometry is a condition by having as many singular values (of the
network’s input-output Jacobian) as possible near 1 (Saxe et al., 2014). Under this
condition, error signals backpropagate faithfully and isometrically through the
network, approximately preserving its norm and all angles between error vectors.
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untrained neural networks can be captured as a Gaussian distribution;

E.g., a maximum depth through which signals can propagate at initialization;
networks are trainable when signals can travel all the way through them
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DEEP INFORMATION PROPAGATION
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We study the behavior of untrained neural networks whose weights and biases are
randomly distributed using mean field theory. We show the existence of depth
scales that naturally limit the maximum depth of signal propagation through these
random networks. Our main practical result is to show that random networks may
be trained precisely when information can travel through them. Thus, the depth
scales that we identify provide bounds on how deep a network may be trained
for a specific choice of hyperparameters. As a corollary to this, we argue that in
networks at the edge of chaos, one of these depth scales diverges. Thus arbitrarily
deep networks may be trained only sufficiently close to criticality. We show that
the presence of dropout destroys the order-to-chaos critical point and therefore
strongly limits the maximum trainable depth for random networks. Finally, we
develop a mean field theory for backpropagation and we show that the ordered
and chaotic phases correspond to regions of vanishing and exploding gradient
respectively.




Gradients in terms of Jacobians

From the feed-forward dynamics of a network in Equation 2, the network’s input-output Jacobian
corresponding to a given input x° can be written, by the chain rule of differentiation, as:

K K
3K = % _T[D'W!, @

where D' € RV*" is a diagonal matrix with entries D}; = ¢'(h%)d;;, with ¢’ denoting the deriva-

tive of nonlinearity ¢, and §;; = 1[i = j] is the Kronecker delta. Here, we will use J®! to denote the
Jacobian from layer k to layer [. Now, we give the relationship between gradients and Jacobians:



Gradients in terms of Jacobians

Proposition 1. Let ¢ = JL/0x* denote the error signal and x° denote the input signal. Then,
1. the gradients satisfy:
gl =eJ KDl @x!t, 9)

where JHE = 9x¥ /6x! is the Jacobian from layer [ to the output and ® is the Kronecker product.
2. additionally, for linear networks, i.e., when ¢ is the identity:

gl, =eJE @ (3%1x0 +a) , (10)

where J%!=1 = 9x!~1/0x0 is the Jacobian from the input to layer I — 1 and a € R¥ is the

constant term that does not depend on x°.



Layerwise dynamical isometry: Ensuring faithful gradients

Consider layerwise Jacobian: L S

Then, it is sufficient to have layerwise dynamical isometry in order to ensure faithful signal
propagation in the network.

Definition 1. (Layerwise dynamical isometry) Let J'=1:! = a;afil € RNtxNi-1 be the Jacobian

matrix of layer [. The network is said to satisfy layerwise dynamical isometry if the singular values

of J'=1! are concentrated near 1 for all layers, i.e., for a given € > 0, the singular value o; satisfies
|1 —o;| < eforall j.

This would guarantee that the signal from layer 1 to | = 1 (or vice versa) is propagated without
amplification or attenuation in any of its dimension.




Layerwise dynamical isometry: Ensuring faithful gradients

Recall,
1. a network is pruned with a global threshold based on connection sensitivity.

2. the connection sensitivity is the gradients scaled by the weights.

<= CS scores across layers need to be of the same scale
== Require the gradients to be faithful and the weights to be of the same scale

for all layers.

This condition is trivially satisfied with the layerwise dynamical isometry, as each
layer is initialized identically (i.e., orthogonal initialization).



Interpreting failure cases from signal propagation perspective

Jacobian singular values Sparsity in pruned network (across layers)
Initialization Mean Std CN il 2 3 4 5 6 7 Error

SG (v=10"%)  2.46e—07 9.90e—08 4.66e+00  0.97 0.80 0.80 0.80 0.80 0.81 0.48 2.66
SG(y=10"3)  5.74e—04 2.45¢—04 8.54e+00 0.97 0.80 0.80 0.80 0.80 0.81 0.48 2.67
SG(y=10"2)  4.49¢e—01 2.51e—01 5.14e+01  0.96 0.80 0.80 0.80 0.81 0.81 0.49 2.67
SG(y=10"1)  2.30e+01 2.56e+01 2.92e+04 0.96 0.81 0.82 0.82 0.82 0.80 0.45 2.61
SG (y=10°) 1.03e+03 2.6le+03 3.34e+11  0.85 0.88 0.99 1.00 1.00 1.00 0.91 90.2
SG (y=10%) 3.67e+04 2.64e+05 inf 0.84 0.95 1.00 1.00 1.00 1.00 1.00 90.2

While CS pruning is robust to moderate changes in JSV, it fails catastrophically
when the condition number is very large (> 1e+11).



Signal propagation on sparse networks
and their training behaviors



How do signals propagate in the sparse network?

Experiments:

Step 1: Initialize a network (VS or LDI).

Step 2: Prune for a sparsity level K based on connection sensitivity.
Step 3: (optional) Enforce approximate dynamical isometry, if specified.
Step 4: Train the pruned sparse network using SGD.

e \Ve measure signal propagation on the sparse network right before Step 4,
and observe training behavior during Step 4.
e {A}-{B}-{C} for {initialization}-{pruning}-{approximate isometry}.



Signal propagation and trainability
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Approximate dynamical isometry

Q: What if we can repair the broken isometry, before training the pruned network,
such that we can achieve trainability comparable to that of the dense network?
Precisely, we consider the following:

min [(C' © W7 (C' @ W) — I'[ ¢

Given the sparsity topology C and initial weights W, this data-free spectral method
attempts to find an optimal W*, such that the combination of the sparse topology
and the weights to be layerwise orthogonal, potentially to the full rank capacity.



Signal propagation and trainability
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Key points

e Pruning breaks dynamical isometry, and the more a network is pruned, the weaker
signal propagation becomes on the pruned sparse network.

e The better a network propagates signals, the faster it converges during training.

e Enforcing approximate isometry recovers signal propagation on sparse networks, which
in turn improves the training performance of sparse networks quite significantly.

e In addition to signal propagation, the structure (the choice of pruning method) and the
number of parameters (sparsity level) also affect trainability of sparse neural networks.



Validation and extensions

: Modern networks

VGG16 ResNet32 ResNet56 ResNet110 WRN16
Initialization | OS  Error | OS  Error | OS  Emor | OS Ermor | OS  Error
VS-L 13.72 8.16 4.50 11.96 4.64 10.43 4.65 9.13 11.99 45.08
VS-G 13.60 8.18 4.55 11.89 4.67 10.60 4.67 9.17 11.50 44.56
VS-H 15.44 8.36 4.41 12.21 4.44 10.63 4.39 9.08 13.49 46.62
LDI 1333 811 | 443 1155 | 451 1008 | 457 888 | 1128 4420
LDI-AI 6.43 7.99 2.62 11.47 2.79 9.85 2.92 8.78 6.62 44.12

e The first and second best results are highlighted in each column of errors.

e The orthogonal initialization with enforced approximate isometry method
achieves the best results across all tested architectures.




Validation and extensions: Nonlinearities

VGG16 ResNet32
Initialization  tanh  lrelu  selu | tanh l-relu selu
VS-L 9.07 ! 8.70 13.41 12.04 12.26
VS-G 9.06 7.84 8.82 13.44 12.02 12.32
VS-H 9.99 8.43 9.09 13.12 11.66 12.21
LDI 876 7.53 821 | 1322 1158 11.98
LDI-AI 8.72 7.47 8.20 13.14 11.51 11.68

e The first and second best results are highlighted in each column of errors.
e The orthogonal initialization consistently outperforms variance scaling
methods across different nonlinear activation functions.




Validation and extensions: Unsupervised pruning

Loss Superv. K=3 K= K=
GT v 2.46 2.43 2.61
Pred. (raw) 3.31 3.38 3.60

X
Pred. (softmax) X 3.1 X g 3.56
Unif. X 2.0t 207 294




Validation and extensions: Transfer of sparsity

Dataset Error Error
Category  prune train&test sup. — unsup.  (A) rand

Standard MNIST MNIST 242 — 294 +0.52 | 15.56
Transfer F-MNIST MNIST 266 — 280 +0.14| 18.03

Standard F-MNIST F-MNIST 11.90 — 13.01 +1.11 | 24.72
Transfer MNIST F-MNIST 14.17 — 13.39  -0.78 24.89




Validation and extensions: Architecture sculpting
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Summary

(Observation) The initial weights have a critical impact on connection sensitivity, and
hence pruning results.

(Layerwise dynamical isometry) A formal characterization of a sufficient condition to
ensure faithful signal propagation in a network.

(Signal propagation and trainability of sparse networks) pruning breaks dynamical
isometry and degrades trainability; a simple method to recover signal propagation and
enhance trainability of the compressed network.

(Validation and extensions) A range of experiments to verify that the effectiveness of
signal propagation perspective for pruning at initialization.



Towards “winning lottery ticket”

The results on the increased trainability of compressed neural networks can take
us one step towards finding “winning lottery ticket” (i.e., a set of initial weights that
given a sparse topology can quickly reach to a generalization performance that is
comparable to the uncompressed network, once trained) suggested in Frankle &
Carbin (2019).



Limitations & future work

e While we produce (quickly) trainable sparse networks, the two-stage orthogonalization
process can be suboptimal, especially at high sparsity.

e \Weights change during training affecting signal propagation, and hence, dynamical
isometry may not continue to hold over the course of training.

e A potential key to network compression is to address the complex interplay between
optimization and signal propagation, and it might be immensely beneficial if an
optimization naturally takes place in the space of isometry.



