

NEC Laboratories America Relentless passion for innovation

IEEE 2017 Conference on Computer Vision and Pattern Recognition

CVPR 2017

DESIRE: DISTANT FUTURE PREDICTION IN DYNAMIC SCENES WITH INTERACTING AGENTS

Namhoon Lee¹, Wongun Choi², Paul Vernaza², Christopher B. Choy³, Philip H. S.Torr¹, Manmohan Chandraker^{2,4}

I: University of Oxford, 2: NEC Labs, 3: Stanford University, 4: UCSD

FUTURE PREDICTION

- We address the problem of **future prediction** for multiple agents in dynamic scenes.
- Future prediction is defined as predicting agents' future locations in terms of trajectories.

FUTURE PREDICTION IS DIFFICULT

Various factors

A prediction entails reasoning about probable outcomes from multiple influences (e.g., *past motion, scene context, interactions*). It requires accurate *time-profile* for inter-influence between agents.

Multi-modality

Future prediction is inherently riddled with *uncertainty* and is fundamentally different from path prediction.

A system needs to produce a **distribution over all probable outcomes** (future), instead of one deterministic output (a path).

FUTURE PREDICTION IS DIFFICULT

problem scenario

- Various factors
 (past motion, scene context, interactions).
- Multi-modality
 distribution over all
 probable outcomes

DESIRE: DEep Stochastic IOC RNN Encoder-decoder

- DESIRE is a framework for distant future prediction of multiple interacting agents in dynamic scenes.
- We generate multiple prediction hypothesis using *Variational Auto-Encoder* and rank-and-refine them within *Inverse Optimal Control* framework.

DESIRE:

DEep Stochastic IOC RNN Encoder-decoder

SCENE CONTEXT FUSION (SCF) UNIT

Prediction example

Iterative feedback

(10% acc. for CVAE and DESIRE)

Prediction errors

-											
		KITTI				SDD					
		(error in n	(error in meters / miss-rate with 1m threshold)			(pixel error at 1/5 resolution)					
	Method	1s	2s	3s	4s	1s	2s	3s	4s		
	Linear	0.89 / 0.31	2.07 / 0.49	3.67 / 0.59	5.62 / 0.64	2.58	5.37	8.74	12.54		
	RNN ED-SI	0.56 / 0.16	1.40 / 0.44	2.65 / 0.58	4.29 / 0.65	1.51	3.56	6.04	8.80		
	CVAE	0.35 / 0.06	0.93 / 0.30	1.81 / 0.49	3.07 / 0.59	1.84	3.93	6.47	9.65		
	DESIRE-S-IT0	0.32 / 0.05	0.84 / 0.26	1.67 / 0.43	2.82 / 0.54	1.59	3.31	5.27	7.75		
	DESIRE-SI-IT4	0.28 / 0.04	0.67 / 0.17	1.22 / 0.29	2.06 / 0.41	1.29	2.35	3.47	5.33		

DESIRE CHARACTERISTICS

Scalability:

The use of deep learning allows for end-to-end training and easy incorporation of multiple cues.

Diversity:

CVAE is combined with RNN encodings to generate stochastic prediction hypotheses to hallucinate multi-modalities.

Accuracy:

The IOC-based framework accumulates long-term future rewards and the refinement module learns to estimate a deformation of the trajectory, enabling more accurate predictions.

THANKYOU