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FUTURE PREDICTION

* Ve address the problem of future prediction for multiple
agents In dynamic scenes.

» Future prediction is defined as predicting agents' future
locations in terms of trajectories.

CVPR'I7 - 23 July 2017

Namhoon Lee | TorrVision Group, Department of Engineering Science &@ OXTORD



CVPR'I'/

FUTURE PREDICTION IS DIFFICULT

Various factors
A prediction entails reasoning about probable outcomes from multiple
influences (e.g., past motion, scene context, interactions).

't requires accurate time-profile for inter-influence between agents.

Multi-modality
Future prediction is inherently riddled with uncertainty and i1s fundamentally
different from path prediction.

A system needs to produce a distribution over all probable outcomes
(future), instead of one deterministic output (a path).
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FUTURE PREDICTION IS DIFFICULT
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DESIRE.
DEep Stochastic IOC RNN Encoder-decoder

« DESIRE is a framework for distant future prediction of multiple interacting
agents In dynamic scenes.

*  We generate multiple prediction hypothesis using Variational Auto-Encoder
and rank-and-refine them within Inverse Optimal Control framework.
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DESIRE.
DEep Stochastic IOC RNN Encoder-decoder

Sample Generation Module Ranking & Refinement Module

RNN Decoder2

~

CVAE
RNN Encoderl | RNN Decoderl i Recon [SCF] SCF] SCF] Regression
fc|™ M M Loss
‘ t ‘ /_’—a ".’ fc ] Y v v v AQ
> 4 »| + >E [

Input |GRU|->|'ET_U:|—> —*|GRU + 1@ . |GRU|->|GRU|—> GRU ® >(GRU [GRU [GRU]—

X ’ Lmax )

. \ J

eature

B
Pooling Scoring

~N
J
_<

ﬂ H \»_~
f
\_2 \ ; KLD Loss
7/J S RNN Encoder2 /\‘_’/\ % = — T T
Y T3 ¢] - , o = L) (e - ()
J ri g - It
\ ) 1
Iterative Feedback

CN
( p(7) concat
R mask
L @® addition

SN
e UNIVERSITY OF
B )3

XFORD

Namhoon Lee | TorrVision Group, Department of Engineering Science

CVPR'I7 - 23 July 2017



SCENE CONTEXT FUSION (SCF) UNIT
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Prediction

example
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(10% acc. for CVAE and DESIRE)
Prediction KITTI SDD
(error in meters / miss-rate with 1m threshold) (pixel error at 1/5 resolution)
inea 0.89/0Q 07 /0.49 67 / 0.59 62 / 0.64 : .74 /

RNN ED-SI 0.56/0.16 1.40/0.44 2.65/0.58 4.29/0.65 1.51 3.56 6.04 8.80
CVAE 0.35/0.06 0.93/0.30 181/049 3.07/0.59 1.84 3.93 6.47 9.65
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» Scalability:
The use of deep learning allows for end-to-end training and easy
incorporation of multiple cues.

* Diversity:
CVAE Is combined with RNN encodings to generate stochastic
prediction hypotheses to hallucinate multi-modalities.

- Accuracy:

The IOC-based framework accumulates long-term future rewards
and the refinement module learns to estimate a deformation of the
trajectory, enabling more accurate predictions.
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