
Efficient Neural Network Compression

Namhoon Lee
University of Oxford

3 May 2019

A Challenge in Deep Learning:
Overparameterization

Large neural networks require:

memory & computations power consumption

A Challenge in Deep Learning:
Overparameterization

Large neural networks require: Critical to resource constrained environments

real-time tasks
e.g., autonomous car

embedded systems
e.g., mobile devices

memory & computations power consumption

Network compression
The goal is to reduce the size of neural network without compromising accuracy.

big
small

~ same accuracy

Approaches

● Network pruning
: reduce the number of parameters

Approaches

● Network pruning
: reduce the number of parameters

● Network quantization
: reduce the precision of parameters

Approaches

● Network pruning
: reduce the number of parameters

● Network quantization
: reduce the precision of parameters

Others: knowledge distillation, conditional computation, etc.

Approaches

● Network pruning
: reduce the number of parameters

● Network quantization
: reduce the precision of parameters

Others: knowledge distillation, conditional computation, etc.

Network pruning

Different forms

● Parameters (weights, biases)

● Activations (neurons)

can be done structured way
(e.g., channel, filter, layer)

Network pruning

Different forms

● Parameters (weights, biases)

● Activations (neurons)

can be done structured way
(e.g., channel, filter, layer)

Different principles

● Magnitude based

● Hessian based

● Bayesian

Network pruning

Different forms

● Parameters (weights, biases)

● Activations (neurons)

can be done structured way
(e.g., channel, filter, layer)

⇒ remove > 90% parameters

Different principles

● Magnitude based

● Hessian based

● Bayesian

● Hyperparameters with weakly grounded heuristics
(e.g., layer-wise threshold [5], stochastic pruning rule [2])

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

● Hyperparameters with weakly grounded heuristics
(e.g., layer-wise threshold [5], stochastic pruning rule [2])

● Architecture specific requirements
(e.g., conv/fc separate prune in [1])

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

● Hyperparameters with weakly grounded heuristics
(e.g., layer-wise threshold [5], stochastic pruning rule [2])

● Architecture specific requirements
(e.g., conv/fc separate prune in [1])

● Optimization difficulty
(e.g., convergence in [3, 6])

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

● Hyperparameters with weakly grounded heuristics
(e.g., layer-wise threshold [5], stochastic pruning rule [2])

● Architecture specific requirements
(e.g., conv/fc separate prune in [1])

● Optimization difficulty
(e.g., convergence in [3, 6])

● Pretraining step
([1,2,3,4,5,6]; almost all)

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

● Hyperparameters with weakly grounded heuristics
(e.g., layer-wise threshold [5], stochastic pruning rule [2])

● Architecture specific requirements
(e.g., conv/fc separate prune in [1])

● Optimization difficulty
(e.g., convergence in [3, 6])

● Pretraining step
([1,2,3,4,5,6]; almost all)

Drawbacks in existing approaches

References
[1] Learning both weights and connections for efficient neural network, Han et al. NIPS’15
[2] Dynamic network surgery for efficient dnns, Guo et al. NIPS’16.
[3] Learning-compression algorithms for neural net pruning, Carreira-Perpinan & Idelbayev. CVPR’18.
[4] Variational dropout sparsifies deep neural networks, Molchanov et al. ICML’17.
[5] Learning to prune deep neural networks via layer-wise optimal brain surgeon, Dong et al. NIPS’17.
[6] Learning Sparse Neural Networks through L0 Regularization, Louizos et al. ICLR’18

poor scalability & utility

No hyperparameters

No iterative prune -- retrain cycle

No pretraining

No large data

We want ..

No hyperparameters

No iterative prune -- retrain cycle

No pretraining

No large data

We want ..

Single-shot pruning prior to training

SNIP: Single-shot Network Pruning
based on Connection Sensitivity

N. Lee, T. Ajanthan, P. Torr
International Conference on Learning Representations (ICLR) 2019

Objective

● Identify important parameters in the network and remove unimportant ones

Objective

● Identify important parameters in the network and remove unimportant ones

Idea

● Measure the effect of removing each parameter on the loss

Idea

● Measure the effect of removing each parameter on the loss

Idea

● Measure the effect of removing each parameter on the loss

● The greedy way is prohibitively expensive to perform:

SNIP

The effect on the loss can be approximated by

1. auxiliary variables representing the connectivity of parameters

2. derivative of the loss w.r.t. these indicator variables

SNIP
1. Introduce c

SNIP
1. Introduce c

SNIP
1. Introduce c

2. Derivative w.r.t. c

SNIP
1. Introduce c

2. Derivative w.r.t. c

● ∂L/∂cj is an infinitesimal version of ∆Lj
● measures the rate of change of L w.r.t. infinitesimal change in cj from 1 → 1 − δ
● computed efficiently in one forward-backward pass using auto differentiation, for all j at once

Reference: Understanding black-box predictions via influence functions, Koh & Liang. ICML’17

SNIP
1. Introduce c

2. Derivative w.r.t. c

3. Connection sensitivity

Prune at initialization
● Measure CS on untrained networks prior to training

→ Or zero gradients at pretrained

● Sample weights from a dist. with architecture aware variance
→ Ensure the variance of weights to remain throughout the network ([1])

● Alleviate the dependency on the weights in computing CS
→ Remove the pretraining requirement, architecture dep. hyperparameters

[1] Understanding the difficulty of training deep feedforward neural networks, Glorot & Bengio, AISTATS 2010

LeNets

LeNets

LeNets: comparison to SOTA

LeNets: comparison to SOTA

LeNets: comparison to SOTA

LeNets: comparison to SOTA

LeNets: comparison to SOTA

Various architectures & models

Various architectures & models

Various architectures & models

Various architectures & models

Which parameters are pruned?

Visualize c in the first fc layer for varying data

1. curate a mini-batch
2. compute the connection sensitivity
3. create the pruning mask
4. visualize the first layer (fully connected)

Which parameters are pruned?

Visualize c in the first fc layer for varying data

1. curate a mini-batch
2. compute the connection sensitivity
3. create the pruning mask
4. visualize the first layer (fully connected)

The input was digit 8.

Which parameters are pruned?

Visualize c in the first fc layer for varying data

1. curate a mini-batch
2. compute the connection sensitivity
3. create the pruning mask
4. visualize the first layer (fully connected)

The input was digit 8.

Carrying out such inspection is not straightforward with other methods.

Which parameters are pruned?

Carrying out such inspection is not straightforward with other methods.

Which parameters are pruned?

The parameters connected to the discriminative part of image are retained.

sparsity

Prevent memorization

[Fitting random labels]
Understanding deep learning requires

rethinking generalization, Zhang et al. ICLR’17

The pruned network does not have sufficient capacity to fit the random labels,
but is capable of performing the task.

SNIP
Simple

Versatile
Interpretable

Paper:
https://arxiv.org/abs/1810.02340

Code:
https://github.com/namhoonlee/snip-public

Contact:
http://www.robots.ox.ac.uk/~namhoon/

https://arxiv.org/abs/1810.02340
https://github.com/namhoonlee/snip-public
http://www.robots.ox.ac.uk/~namhoon/

