
Toward e�cient deep learning
with sparse neural networks

Namhoon Lee

UNIST

1

Problem: Neural networks are too large

Artificial neural network

• Number of parameters > M, B, T
• Memory, computation, energy

phone vehicle vision

robot dialogue embeded

Resource constrained environments

2

Problem: Neural networks are too large

Artificial neural network

• Number of parameters > M, B, T
• Memory, computation, energy

phone vehicle vision

robot dialogue embeded

Resource constrained environments

2

Sparse neural networks

Pruning

Dense neural network Sparse neural network

3

Sparse neural networks

Pruning

Dense neural network Sparse neural network

w11 0 0

0 w22 0

0 w32 w33

0 0 w43

Sparse parameterization

Computations associated with zero
values can be skipped!

3

The focus of this presentation

How to find a sparse neural network

How to initialize a sparse neural network

How to parallelize a sparse neural network training

4

Outline

“SNIP: Single-shot network pruning based on connection sensitivity”
by Lee, Ajanthan, Torr (ICLR 2019)

“A signal propagation perspective for pruning neural networks at
initialization” by Lee, Ajanthan, Gould, Torr (ICLR 2020)

“Understanding the e�ects of data parallelism on neural network
training” by Lee, Ajanthan, Torr, Jaggi (ICLR 2021)

5

SNIP: Single-shot network pruning
based on connection sensitivity

Namhoon Lee1 Thalaiyasingam Ajanthan1 Philip H. S. Torr1

ICLR 2019
1University of Oxford

6

Neural network pruning

Pruning a densely connected network

Network pruning has a rich history.

There exists various approaches.
• Elements (parameter, activation)

• Metrics (magnitude, derivative)

• Removal (individually, structured)

It can remove many parameters (> 90%).

7

Neural network pruning

Pruning a densely connected network

Network pruning has a rich history.

There exists various approaches.
• Elements (parameter, activation)

• Metrics (magnitude, derivative)

• Removal (individually, structured)

It can remove many parameters (> 90%).

7

Drawbacks in existing methods

Many pruning algorithms involve
• Hyperparameters with heuristics
• Architectural dependency
• Optimization di�culty
• Iterative process
• Pretraining

⇒ Complex, non-scalable, expensive A typical pruning algorithm
(Han et al. 2016; Frankle and Carbin 2019)

8

Drawbacks in existing methods

Many pruning algorithms involve
• Hyperparameters with heuristics
• Architectural dependency
• Optimization di�culty
• Iterative process
• Pretraining

⇒ Complex, non-scalable, expensive

A typical pruning algorithm
(Han et al. 2016; Frankle and Carbin 2019)

8

Drawbacks in existing methods

Many pruning algorithms involve
• Hyperparameters with heuristics
• Architectural dependency
• Optimization di�culty
• Iterative process
• Pretraining

⇒ Complex, non-scalable, expensive A typical pruning algorithm
(Han et al. 2016; Frankle and Carbin 2019)

8

Desired characteristics

Ideally, we want . .

• No hyperparameters
• No architectural dependency
• No iterative prune–train cycle
• No pretraining
• No large data

Single-shot pruning prior to training

9

Desired characteristics

Ideally, we want . .

• No hyperparameters
• No architectural dependency
• No iterative prune–train cycle
• No pretraining
• No large data

Single-shot pruning prior to training

9

Desired characteristics

Ideally, we want . .

• No hyperparameters
• No architectural dependency
• No iterative prune–train cycle
• No pretraining
• No large data

Single-shot pruning prior to training

9

Problem formulation

Pruning as constrained optimization:

min
w
L(w;D) = min

w

1
n

n∑
i=1

`(w; (xi, yi)) ,

s.t. w ∈ Rm, ‖w‖0 ≤ κ .

⇒ Di�cult to solve

Pruning as identification:

∆Lj(w;D) = L(1�w;D)− L((1− ej)�w;D) ,

i.e., e�ect of removing parameter j as a
saliency measure.

⇒ Expensive to measure

10

Problem formulation

Pruning as constrained optimization:

min
w
L(w;D) = min

w

1
n

n∑
i=1

`(w; (xi, yi)) ,

s.t. w ∈ Rm, ‖w‖0 ≤ κ .

⇒ Di�cult to solve

Pruning as identification:

∆Lj(w;D) = L(1�w;D)− L((1− ej)�w;D) ,

i.e., e�ect of removing parameter j as a
saliency measure.

⇒ Expensive to measure

10

Problem formulation

Pruning as constrained optimization:

min
w
L(w;D) = min

w

1
n

n∑
i=1

`(w; (xi, yi)) ,

s.t. w ∈ Rm, ‖w‖0 ≤ κ .

⇒ Di�cult to solve

Pruning as identification:

∆Lj(w;D) = L(1�w;D)− L((1− ej)�w;D) ,

i.e., e�ect of removing parameter j as a
saliency measure.

⇒ Expensive to measure

10

Problem formulation

Pruning as constrained optimization:

min
w
L(w;D) = min

w

1
n

n∑
i=1

`(w; (xi, yi)) ,

s.t. w ∈ Rm, ‖w‖0 ≤ κ .

⇒ Di�cult to solve

Pruning as identification:

∆Lj(w;D) = L(1�w;D)− L((1− ej)�w;D) ,

i.e., e�ect of removing parameter j as a
saliency measure.

⇒ Expensive to measure

10

SNIP

Re-write the objective with auxiliary indicator variable c :

min
c,w

L(c�w;D) = min
c,w

1
n

n∑
i=1

`(c�w; (xi, yi)) ,

s.t. w ∈ Rm , c ∈ {0, 1}m, ‖c‖0 ≤ κ .

Approximate the e�ect of removing j :

∆Lj(w;D) ≈ gj(w;D) =
∂L(c�w;D)

∂cj

∣∣∣∣
c=1

= lim
δ→0

L(c�w;D)− L((c− δ ej)�w;D)

δ

∣∣∣∣
c=1

,

i.e. ∂L/∂cj is an infinitesimal version of ∆Lj (Koh and Liang 2017).

11

SNIP

Re-write the objective with auxiliary indicator variable c :

min
c,w

L(c�w;D) = min
c,w

1
n

n∑
i=1

`(c�w; (xi, yi)) ,

s.t. w ∈ Rm , c ∈ {0, 1}m, ‖c‖0 ≤ κ .

Approximate the e�ect of removing j :

∆Lj(w;D) ≈ gj(w;D) =
∂L(c�w;D)

∂cj

∣∣∣∣
c=1

= lim
δ→0

L(c�w;D)− L((c− δ ej)�w;D)

δ

∣∣∣∣
c=1

,

i.e. ∂L/∂cj is an infinitesimal version of ∆Lj (Koh and Liang 2017).

11

SNIP

Define connection sensitivity:

sj =

∣∣gj(w;D)
∣∣∑m

k=1 |gk(w;D)| .

Characteristics:

• Alleviate the dependency on weights
• One forward-backward pass for all j at once

12

SNIP

Algorithm:

1. Initialize the network parameters w0

2. Sample a mini-batch Db = {(xi, yi)}bi=1 ∼ D

3. Compute the connection sensitivity sj ∀j ∈ {1, ..,m}

4. Keep top-κ and prune the rest

5. Train the pruned network in the standard way

Single-shot Network at Initialization Pruning

13

SNIP

Algorithm:

1. Initialize the network parameters w0

2. Sample a mini-batch Db = {(xi, yi)}bi=1 ∼ D

3. Compute the connection sensitivity sj ∀j ∈ {1, ..,m}

4. Keep top-κ and prune the rest

5. Train the pruned network in the standard way

Single-shot Network at Initialization Pruning

13

SNIP

Algorithm:

1. Initialize the network parameters w0

2. Sample a mini-batch Db = {(xi, yi)}bi=1 ∼ D

3. Compute the connection sensitivity sj ∀j ∈ {1, ..,m}

4. Keep top-κ and prune the rest

5. Train the pruned network in the standard way

Single-shot Network at Initialization Pruning

13

SNIP

Algorithm:

1. Initialize the network parameters w0

2. Sample a mini-batch Db = {(xi, yi)}bi=1 ∼ D

3. Compute the connection sensitivity sj ∀j ∈ {1, ..,m}

4. Keep top-κ and prune the rest

5. Train the pruned network in the standard way

Single-shot Network at Initialization Pruning

13

SNIP

Algorithm:

1. Initialize the network parameters w0

2. Sample a mini-batch Db = {(xi, yi)}bi=1 ∼ D

3. Compute the connection sensitivity sj ∀j ∈ {1, ..,m}

4. Keep top-κ and prune the rest

5. Train the pruned network in the standard way

Single-shot Network at Initialization Pruning

13

Results on LeNets

0 10 20 30 40 50 60 70 80 90
Sparsity (%)

1.2

1.4

1.6

1.8

2.0

2.2
Er
ro
r (
%
)

(a) LeNet-300-100

0 10 20 30 40 50 60 70 80 90
Sparsity (%)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Er
ro
r (
%
)

(b) LeNet-5

SNIP can prune for a range of sparsity levels without losing much accuracy.

14

Comparing to state-of-the-arts

Method Criterion LeNet-300-100 LeNet-5-Ca�e Pretrain # Prune Additional Augment Arch.
κ̄ (%) err. (%) κ̄ (%) err. (%) hyperparam. objective constraints

Ref. – – 1.7 – 0.9 – – – – –
LWC Magnitude 91.7 1.6 91.7 0.8 X many X 7 X
DNS Magnitude 98.2 2.0 99.1 0.9 X many X 7 X
LC Magnitude 99.0 3.2 99.0 1.1 X many X X 7

SWS Bayesian 95.6 1.9 99.5 1.0 X soft X X 7

SVD Bayesian 98.5 1.9 99.6 0.8 X soft X X 7

OBD Hessian 92.0 2.0 92.0 2.7 X many X 7 7

L-OBS Hessian 98.5 2.0 99.0 2.1 X many X 7 X

SNIP (ours) Connection 95.0 1.6 98.0 0.8
7 1 7 7 7sensitivity 98.0 2.4 99.0 1.1

SNIP is capable of pruning for extreme sparsity levels (e.g., 99% for LeNet-5), while being
much simpler than other alternatives.

15

Applying to various architectures

Architecture Model Sparsity (%) # Parameters Error (%) ∆

Convolutional

AlexNet-s 90.0 5.1m → 507k 14.12 → 14.99 +0.87
AlexNet-b 90.0 8.5m → 849k 13.92 → 14.50 +0.58
VGG-C 95.0 10.5m → 526k 6.82 → 7.27 +0.45
VGG-D 95.0 15.2m → 762k 6.76 → 7.09 +0.33
VGG-like 97.0 15.0m → 449k 8.26 → 8.00 −0.26

Residual
WRN-16-8 95.0 10.0m → 548k 6.21 → 6.63 +0.42
WRN-16-10 95.0 17.1m → 856k 5.91 → 6.43 +0.52
WRN-22-8 95.0 17.2m → 858k 6.14 → 5.85 −0.29

Recurrent

LSTM-s 95.0 137k → 6.8k 1.88 → 1.57 −0.31
LSTM-b 95.0 535k → 26.8k 1.15 → 1.35 +0.20
GRU-s 95.0 104k → 5.2k 1.87 → 2.41 +0.54
GRU-b 95.0 404k → 20.2k 1.71 → 1.52 −0.19

SNIP can be applied to various architectures.

16

Visualizing sparsity patterns

b = 1 b = 10 b = 100 b = 1000 b = 10000 train set
(1.94%) (1.72%) (1.64%) (1.56%) (1.40%) –

Visualizing c(1) of LeNet-300-100 reveals:

• When b = 1, SNIP retains connections relevant to perform classification.
• As b increases, remaining connections get close to the average of train set.

17

Preventing memorization

0 5 10 15 20 25 30
Iteration (×103)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

true labels
true labels (prune)
random labels
random labels + reg
random labels (prune)

“Fitting random labels” (Zhang et al. 2017)

The pruned network performs the task well
without fitting the random labels.

SNIP-ing can prevent memorization.

18

Preventing memorization

0 5 10 15 20 25 30
Iteration (×103)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

true labels
true labels (prune)
random labels
random labels + reg
random labels (prune)

“Fitting random labels” (Zhang et al. 2017)

The pruned network performs the task well
without fitting the random labels.

SNIP-ing can prevent memorization.

18

A signal propagation perspective
for pruning neural networks at initialization

Namhoon Lee1 Thalaiyasingam Ajanthan2 Stephen Gould2 Philip H. S. Torr1

ICLR 2020 – spotlight
1University of Oxford 2Australian National University

19

Motivation

Pruning can be done at initialization.

It remains unclear why pruning a randomly
initialized neural network can be e�ective.

We begin by analyzing the e�ect of initial
random weights (w0) on pruning.

The distribution of each node to be of
same variance (LeCun et al. 1998):

wl
0 ∼ U

[
−

√
3
nl ,

√
3
nl

]
.

20

E�ect of initialization on pruning

κ̄ linear (K=7) tanh (K=7)
10
30
50
70
90

2 3 4 5 6 2 3 4 5 6
layer layer

linear (K=7)

2 3 4 5 6
layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
S

(×
10

−
5)

tanh (K=7)

2 3 4 5 6
layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
S

(×
10

−
5)

CS scores saturate when initialized poorly, leading to a sub-network whose parameters
are distributed sparsely toward the end.

• sj = norm(|gj|) = f (w;D), where gj = (∂L/∂w)�w .
• Necessary to ensure reliable gradient!

21

Layerwise dynamical isometry for faithful gradients

Gradients in terms of Jacobians

For a feed-forward network, the gradients satisfy:

gTwl = ε Jl,KDl ⊗ xl−1 ,

where ε = ∂L/∂xK denote the error signal, Jl,K = ∂xK/∂xl is the Jacobian from
layer l to the output layer K, Dl ∈ RN×N refers to the derivative of nonlinearity,
and ⊗ is the Kronecker product.

When pre-activations fall in the linear region of activation (LeCun et al. 1998;
Glorot and Bengio 2010), graidents are solely characterized by Jacobian matrices.

22

Layerwise dynamical isometry for faithful gradients

Gradients in terms of Jacobians

For a feed-forward network, the gradients satisfy:

gTwl = ε Jl,KDl ⊗ xl−1 ,

where ε = ∂L/∂xK denote the error signal, Jl,K = ∂xK/∂xl is the Jacobian from
layer l to the output layer K, Dl ∈ RN×N refers to the derivative of nonlinearity,
and ⊗ is the Kronecker product.

When pre-activations fall in the linear region of activation (LeCun et al. 1998;
Glorot and Bengio 2010), graidents are solely characterized by Jacobian matrices.

22

Layerwise dynamical isometry for faithful gradients

Layerwise dynamical isometry

Let Jl−1,l = ∂xl
∂xl−1 ∈ RNl×Nl−1 be the Jacobian matrix of layer l. The network

satisfies layerwise dynamical isometry if the singular values of Jl−1,l are con-
centrated near 1 for all layers, i.e., for a given ε > 0, the singular value σj
satisfies |1− σj| ≤ ε for all j.

• Assuming mean-field approximation of pre-activations (Poole et al. 2016)
• Stronger condition than dynamical isometry (Saxe et al. 2014)

23

Layerwise dynamical isometry for faithful gradients

Layerwise dynamical isometry

Let Jl−1,l = ∂xl
∂xl−1 ∈ RNl×Nl−1 be the Jacobian matrix of layer l. The network

satisfies layerwise dynamical isometry if the singular values of Jl−1,l are con-
centrated near 1 for all layers, i.e., for a given ε > 0, the singular value σj
satisfies |1− σj| ≤ ε for all j.

• Assuming mean-field approximation of pre-activations (Poole et al. 2016)
• Stronger condition than dynamical isometry (Saxe et al. 2014)

23

Sparsity degrades signal propagation

Jacobian singular values (JSV) decrease as per
increasing sparsity.

⇒ Sparsity degrades signal propagation.

24

Enforcing approximate dynamical isometry

Enforce approximate isometry:

min
Wl
‖(Cl �Wl)T(Cl �Wl)− Il‖F .

⇒ Restore signal propagation!

⇒ Improve training performance!

25

Enforcing approximate dynamical isometry

Enforce approximate isometry:

min
Wl
‖(Cl �Wl)T(Cl �Wl)− Il‖F .

⇒ Restore signal propagation!

⇒ Improve training performance!

25

Enforcing approximate dynamical isometry

Enforce approximate isometry:

min
Wl
‖(Cl �Wl)T(Cl �Wl)− Il‖F .

⇒ Restore signal propagation!

⇒ Improve training performance!

25

Validations and extensions

Experiments:
• Modern neural networks
• Non-linearity functions
• Pruning without supervision
• Transfer of sparsity
• Architecture sculpting

Please check the paper for more.

26

https://arxiv.org/abs/1906.06307

Summary

Observations:

• The initial random weights have critical impact on pruning.
• Sparsity breaks dynamical isometry and degrades signal propagation.

Suggestion:

Approximate isometry to secure signal propagation and enhance training!

27

Understanding the e�ects of data parallelism and sparsity
on neural network training

Namhoon Lee1 Thalaiyasingam Ajanthan2 Philip H. S. Torr1 Martin Jaggi3

ICLR 2021
1University of Oxford 2Australian National University 3EPFL

28

Data parallelism

da
ta

gradient

A parallel computing system

Processing training data in parallel

Accelerate training and model-agnostic

Degree of parallelism ≡ Batch size (single node)

Active research for the e�ect of batch size (Dean
et al. 2012; Goyal et al. 2017; Ho�er et al. 2017;
Shallue et al. 2019; Lin et al. 2020)

29

Data parallelism

da
ta

gradient

A parallel computing system

Processing training data in parallel

Accelerate training and model-agnostic

Degree of parallelism ≡ Batch size (single node)

Active research for the e�ect of batch size (Dean
et al. 2012; Goyal et al. 2017; Ho�er et al. 2017;
Shallue et al. 2019; Lin et al. 2020)

29

Sparsity

Pruning

Dense neural network Sparse neural network

Introducing sparsity by pruning

Sparse neural networks

Save computations and memory

Pruning at initialization prior to training (Lee
et al. 2019; Wang et al. 2020)

Subsequent training remains unknown.

30

Sparsity

Pruning

Dense neural network Sparse neural network

Introducing sparsity by pruning

Sparse neural networks

Save computations and memory

Pruning at initialization prior to training (Lee
et al. 2019; Wang et al. 2020)

Subsequent training remains unknown.

30

Proposal

Data parallelism & Sparsity

• E�cient deep learning
• Complimentary benefits

What we do:

1. Measure their e�ects on training time
2. Develop theoretical analysis to explain the e�ects

31

Proposal

Data parallelism & Sparsity

• E�cient deep learning
• Complimentary benefits

What we do:

1. Measure their e�ects on training time
2. Develop theoretical analysis to explain the e�ects

31

Setup

For a given workload

Network Data set Algorithm

Train for batch sizes and sparsity levels

Measure steps-to-result (K?)

Metaparameter search
• Parameters set before training

(e.g. learning rate)
• To avoid any assumption on optimal

metaparameters
• Search space: preliminary results
• Budget: 100 training trials

Steps-to-result (K?) vs. Batch size (B)

32

Setup

For a given workload

Network Data set Algorithm

Train for batch sizes and sparsity levels

Measure steps-to-result (K?)

Metaparameter search
• Parameters set before training

(e.g. learning rate)
• To avoid any assumption on optimal

metaparameters
• Search space: preliminary results
• Budget: 100 training trials

Steps-to-result (K?) vs. Batch size (B)

32

Setup

For a given workload

Network Data set Algorithm

Train for batch sizes and sparsity levels

Measure steps-to-result (K?)

Metaparameter search
• Parameters set before training

(e.g. learning rate)
• To avoid any assumption on optimal

metaparameters
• Search space: preliminary results
• Budget: 100 training trials

Steps-to-result (K?) vs. Batch size (B)

32

Measuring the e�ects

21 23 25 27 29 211 213
Batch size

20

22

24

26

28

210

212

St
ep

s
Sparsity: 0%

General scaling trend
(K? vs. B)

General scaling trend across various workloads
• Linear scaling
• Diminishing returns
• Maximal data parallelism

Sparsity levels (0− 90%)

Di�culty of training under sparsity

33

Measuring the e�ects

21 23 25 27 29 211 213
Batch size

20

22

24

26

28

210

212

St
ep

s

Sparsity: 0%

21 23 25 27 29 211 213

Batch size

21

23

25

27

29

211

213

St
ep

s

Sparsity: 50%

21 23 25 27 29 211 213

Batch size

21

23

25

27

29

211

213

St
ep

s

Sparsity: 70%

21 23 25 27 29 211 213
Batch size

22

24

26

28

210

212

214

St
ep

s

Sparsity: 90%

Various sparsity levels

General scaling trend across various workloads
• Linear scaling
• Diminishing returns
• Maximal data parallelism

Sparsity levels (0− 90%)

Di�culty of training under sparsity

33

Measuring the e�ects

21 23 25 27 29 211 213

Batch size
27

28

29

210

211

212

213

214

St
ep

s
All sparsity

Sparsity: 0%
Sparsity: 50%
Sparsity: 70%
Sparsity: 90%

All sparsity levels

General scaling trend across various workloads
• Linear scaling
• Diminishing returns
• Maximal data parallelism

Sparsity levels (0− 90%)

Di�culty of training under sparsity

33

Understanding the e�ects

Based on convergence properties of stochastic gradient methods:

The relationship between steps-to-result (K?) and batch size (B)

K? ≈ c1
B

+ c2 , where c1 =
∆Lβ
µ2ε2 and c2 =

∆

η̄?µε
.

This result precisely illustrates the observed scaling trends.

1. Linear scaling, diminishing returns, maximal data parallelism
2. Lipschitz smoothness (L) is what can shift the curve vertically

34

Understanding the e�ects

Based on convergence properties of stochastic gradient methods:

The relationship between steps-to-result (K?) and batch size (B)

K? ≈ c1
B

+ c2 , where c1 =
∆Lβ
µ2ε2 and c2 =

∆

η̄?µε
.

This result precisely illustrates the observed scaling trends.

1. Linear scaling, diminishing returns, maximal data parallelism
2. Lipschitz smoothness (L) is what can shift the curve vertically

34

Lipschitz smoothness under sparsity

0 5 10 15 20 25 30 35 40
Steps (×103)

0

1

2

3

4

5

6

7

8
Lip

 c
hi
tz
 c
on

 t
an

t o
f ∇

f
Simple-CNN

Spar ity: 0%
Sparsity: 50%
Sparsity: 70%
Sparsity: 90%

Local L throughout training

Local Lipschitz smoothness (L)

The higher sparsity, the higher L

Gradient changes relatively too quickly

The di�culty of training sparse networks

35

Summary

Main points:

1. General scaling trend for the e�ects of data parallelism and sparsity
2. Theoretical analysis to verify the e�ects
3. Lipschitz smoothness to explain the di�culty of training sparse networks

Code: https://github.com/namhoonlee/e�ect-dps-public

Contact: namhoon@robots.ox.ac.uk

36

https://github.com/namhoonlee/effect-dps-public
namhoon@robots.ox.ac.uk

References i

Dean, Je�rey et al. (2012). “Large scale distributed deep networks”. In: NeurIPS.
Frankle, Jonathan and Michael Carbin (2019). “The lottery ticket hypothesis: Finding

sparse, trainable neural networks”. In: ICLR.
Glorot, Xavier and Yoshua Bengio (2010). “Understanding the di�culty of training deep

feedforward neural networks”. In: AISTATS.
Goyal, Priya et al. (2017). “Accurate, large minibatch sgd: Training imagenet in 1 hour”. In:
arXiv preprint arXiv:1706.02677.

Han, Song, Huizi Mao, and William J Dally (2016). “Deep compression: Compressing deep
neural networks with pruning, trained quantization and hu�man coding”. In: ICLR.

Ho�er, Elad, Itay Hubara, and Daniel Soudry (2017). “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks”. In: NeurIPS.

36

References ii

Koh, Pang Wei and Percy Liang (2017). “Understanding black-box predictions via
influence functions”. In: ICML.

LeCun, Yann A et al. (1998). “E�cient backprop”. In: Neural networks: Tricks of the trade.
Lee, Namhoon, Thalaiyasingam Ajanthan, and Philip HS Torr (2019). “SNIP: Single-shot

network pruning based on connection sensitivity”. In: ICLR.
Lin, Tao et al. (2020). “Don’t Use Large Mini-Batches, Use Local SGD”. In: ICLR.
Poole, Ben et al. (2016). “Exponential expressivity in deep neural networks through

transient chaos”. In: NeurIPS.
Saxe, Andrew M, James L McClelland, and Surya Ganguli (2014). “Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks”. In: ICLR.
Shallue, Christopher J et al. (2019). “Measuring the e�ects of data parallelism on neural

network training”. In: JMLR.

36

References iii

Wang, Chaoqi, Guodong Zhang, and Roger Grosse (2020). “Picking Winning Tickets Before
Training by Preserving Gradient Flow”. In: ICLR.

Zhang, Chiyuan et al. (2017). “Understanding deep learning requires rethinking
generalization”. In: ICLR.

36

	References

