Toward efficient deep learning with sparse neural networks

Namhoon Lee

UNIST

Problem: Neural networks are too large

Artificial neural network

- Number of parameters > M, B, T
- Memory, computation, energy

Problem: Neural networks are too large

Artificial neural network

- Number of parameters > M, B, T
- Memory, computation, energy

Resource constrained environments

Sparse neural networks

Dense neural network

Sparse neural network

Sparse neural networks

Dense neural network

Sparse neural network

Sparse parameterization

Computations associated with zero values can be skipped!

How to *find* a sparse neural network

How to *initialize* a sparse neural network

How to *parallelize* a sparse neural network training

"SNIP: Single-shot network pruning based on connection sensitivity" by Lee, Ajanthan, Torr (ICLR 2019)

"A signal propagation perspective for pruning neural networks at initialization" by Lee, Ajanthan, Gould, Torr (ICLR 2020)

"Understanding the effects of data parallelism on neural network training" by Lee, Ajanthan, Torr, Jaggi (ICLR 2021)

SNIP: Single-shot network pruning based on connection sensitivity

Namhoon Lee¹ Thalaiyasingam Ajanthan¹ Philip H. S. Torr¹ ICLR 2019

¹University of Oxford

Neural network pruning

Pruning a densely connected network

Network pruning has a rich history.

There exists various approaches.

- Elements (parameter, activation)
- Metrics (magnitude, derivative)
- Removal (individually, structured)

Neural network pruning

Pruning a densely connected network

Network pruning has a rich history.

There exists various approaches.

- Elements (parameter, activation)
- Metrics (magnitude, derivative)
- Removal (individually, structured)

It can remove many parameters (> 90%).

Many pruning algorithms involve

- Hyperparameters with heuristics
- Architectural dependency
- Optimization difficulty
- Iterative process
- Pretraining

Many pruning algorithms involve

- Hyperparameters with heuristics
- Architectural dependency
- Optimization difficulty
- Iterative process
- Pretraining

 \Rightarrow Complex, non-scalable, expensive

Many pruning algorithms involve

- Hyperparameters with heuristics
- Architectural dependency
- Optimization difficulty
- Iterative process
- Pretraining
- \Rightarrow Complex, non-scalable, expensive

A typical pruning algorithm (Han et al. 2016; Frankle and Carbin 2019) Ideally, we want . .

Ideally, we want . .

- No hyperparameters
- No architectural dependency
- No iterative prune-train cycle
- No pretraining
- No large data

Ideally, we want . .

- No hyperparameters
- No architectural dependency
- No iterative prune-train cycle
- No pretraining
- No large data

Single-shot pruning prior to training

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$

s.t. $\mathbf{w} \in \mathbb{R}^m, \quad \|\mathbf{w}\|_{\mathbf{o}} \le \kappa .$

$$\begin{split} \min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) &= \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_{i}, \mathbf{y}_{i})) \;, \\ \text{s.t.} \quad \mathbf{w} \in \mathbb{R}^{m}, \quad \|\mathbf{w}\|_{\mathbf{o}} \leq \kappa \;. \end{split}$$

 \Rightarrow Difficult to solve

$$\begin{split} \min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) &= \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_{i}, \mathbf{y}_{i})) \;, \\ \text{s.t.} \quad \mathbf{w} \in \mathbb{R}^{m}, \quad \|\mathbf{w}\|_{\mathbf{o}} \leq \kappa \;. \end{split}$$

 \Rightarrow Difficult to solve

Pruning as identification:

$$\Delta L_j(\mathbf{w}; \mathcal{D}) = L(\mathbf{1} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{1} - \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D}) \; ,$$

i.e., effect of removing parameter **j** as a saliency measure.

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$

s.t. $\mathbf{w} \in \mathbb{R}^m, \quad \|\mathbf{w}\|_0 \le \kappa .$

 \Rightarrow Difficult to solve

Pruning as identification:

 $\Delta L_j(\mathbf{w}; \mathcal{D}) = L(\mathbf{1} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{1} - \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D}) \;,$

i.e., effect of removing parameter **j** as a saliency measure.

 \Rightarrow Expensive to measure

SNIP

Re-write the objective with auxiliary indicator variable ${f c}$:

$$\min_{\mathbf{c},\mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c},\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$

s.t. $\mathbf{w} \in \mathbb{R}^m$, $\mathbf{c} \in \{\mathbf{0}, \mathbf{1}\}^m$, $\|\mathbf{c}\|_{\mathbf{0}} \le \kappa$

SNIP

Re-write the objective with auxiliary indicator variable **c** :

$$\min_{\mathbf{c},\mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c},\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$

s.t. $\mathbf{w} \in \mathbb{R}^m$, $\mathbf{c} \in \{\mathbf{0}, \mathbf{1}\}^m$, $\|\mathbf{c}\|_{\mathbf{0}} \le \kappa$

Approximate the effect of removing *j* :

$$\Delta L_j(\mathbf{w}; \mathcal{D}) \approx g_j(\mathbf{w}; \mathcal{D}) = \left. \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_j} \right|_{\mathbf{c}=\mathbf{1}} = \lim_{\delta \to \mathbf{0}} \frac{L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{c} - \delta \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D})}{\delta} \Big|_{\mathbf{c}=\mathbf{1}} ,$$

i.e. $\partial L/\partial c_j$ is an infinitesimal version of ΔL_j (Koh and Liang 2017).

Define connection sensitivity:

$$\mathbf{s}_j = rac{\left| oldsymbol{g}_j(\mathbf{w}; \mathcal{D})
ight|}{\sum_{k=1}^m \left| oldsymbol{g}_k(\mathbf{w}; \mathcal{D})
ight|} \; .$$

Characteristics:

- Alleviate the dependency on weights
- One forward-backward pass for all *j* at once

- 1. Initialize the network parameters \boldsymbol{w}_{o}
- 2. Sample a mini-batch $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$

- 1. Initialize the network parameters \boldsymbol{w}_{o}
- 2. Sample a mini-batch $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$
- 3. Compute the connection sensitivity $s_j \; \forall j \in \{1,..,m\}$
- 4. Keep top- κ and prune the rest

- 1. Initialize the network parameters \boldsymbol{w}_{o}
- 2. Sample a mini-batch $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$
- 3. Compute the connection sensitivity $s_j \; \forall j \in \{1,..,m\}$
- 4. Keep top- κ and prune the rest
- 5. Train the pruned network in the standard way

- 1. Initialize the network parameters \boldsymbol{w}_{o}
- 2. Sample a mini-batch $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$
- 3. Compute the connection sensitivity $s_j \; \forall j \in \{1,..,m\}$
- 4. Keep top- κ and prune the rest
- 5. Train the pruned network in the standard way

Single-shot Network at Initialization Pruning

Results on LeNets

SNIP can prune for a range of sparsity levels without losing much accuracy.

Comparing to state-of-the-arts

Method	Criterion	LeNet- ⊼ (%)	300-100 err. (%)	LeNet ⊼ (%)	-5-Caffe err. (%)	Pretrain	# Prune	Additional hyperparam.	Augment objective	Arch. constraints
Ref.	-	-	1.7	-	0.9	-	-	-	-	-
LWC	Magnitude	91.7	1.6	91.7	0.8	\checkmark	many	\checkmark	X	\checkmark
DNS	Magnitude	98.2	2.0	99.1	0.9	\checkmark	many	\checkmark	×	\checkmark
LC	Magnitude	99.0	3.2	99.0	1.1	\checkmark	many	\checkmark	\checkmark	×
SWS	Bayesian	95.6	1.9	99.5	1.0	\checkmark	soft	\checkmark	\checkmark	×
SVD	Bayesian	98.5	1.9	99.6	0.8	\checkmark	soft	\checkmark	\checkmark	×
OBD	Hessian	92.0	2.0	92.0	2.7	\checkmark	many	\checkmark	×	×
L-OBS	Hessian	98.5	2.0	99.0	2.1	\checkmark	many	\checkmark	×	\checkmark
SNIP (ours)	Connection sensitivity	95.0 98.0	1.6 2.4	98.0 99.0	o.8 1.1	×	1	×	×	×

SNIP is capable of pruning for extreme sparsity levels (*e.g.*, 99% for LeNet-5), while being much simpler than other alternatives.

Applying to various architectures

Architecture	Model	Sparsity (%)	# Parameters	Error (%)	Δ
Convolutional	AlexNet-s AlexNet-b VGG-C VGG-D VGG-like	90.0 90.0 95.0 95.0 97.0	$\begin{array}{rrrr} 5.1m \ \rightarrow & 507k \\ 8.5m \ \rightarrow & 849k \\ 10.5m \ \rightarrow & 526k \\ 15.2m \ \rightarrow & 762k \\ 15.0m \ \rightarrow & 449k \end{array}$	$\begin{array}{rrrrr} {\rm 14.12} & \to & {\rm 14.99} \\ {\rm 13.92} & \to & {\rm 14.50} \\ {\rm 6.82} & \to & {\rm 7.27} \\ {\rm 6.76} & \to & {\rm 7.09} \\ {\rm 8.26} & \to & {\rm 8.00} \end{array}$	+0.87 +0.58 +0.45 +0.33 - 0.26
Residual	WRN-16-8 WRN-16-10 WRN-22-8	95.0 95.0 95.0	$\begin{array}{rrrr} \text{10.0m} & \rightarrow & \text{548k} \\ \text{17.1m} & \rightarrow & \text{856k} \\ \text{17.2m} & \rightarrow & \text{858k} \end{array}$	$egin{array}{rcl} 6.21 & ightarrow & 6.63 \ 5.91 & ightarrow & 6.43 \ 6.14 & ightarrow & 5.85 \end{array}$	+0.42 +0.52 - 0 . 29
Recurrent	LSTM-s LSTM-b GRU-s GRU-b	95.0 95.0 95.0 95.0	$\begin{array}{rrrr} 137k \ \rightarrow & 6.8k \\ 535k \ \rightarrow & 26.8k \\ 104k \ \rightarrow & 5.2k \\ 404k \ \rightarrow & 20.2k \end{array}$	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 0.31 +0.20 +0.54 - 0.19

SNIP can be applied to various architectures.

Visualizing sparsity patterns

Visualizing $c^{(1)}$ of LeNet-300-100 reveals:

- When b = 1, SNIP retains connections relevant to perform classification.
- As **b** increases, remaining connections get close to the average of train set.

Preventing memorization

"Fitting random labels" (Zhang et al. 2017)

Preventing memorization

"Fitting random labels" (Zhang et al. 2017)

The pruned network performs the task well without fitting the random labels.

SNIP-ing can prevent memorization.

A signal propagation perspective for pruning neural networks at initialization

Namhoon Lee¹ Thalaiyasingam Ajanthan² Stephen Gould² Philip H. S. Torr¹ ICLR 2020 – spotlight

¹University of Oxford ²Australian National University

Pruning can be done at initialization.

It remains unclear why pruning a randomly initialized neural network can be effective.

We begin by analyzing the effect of initial random weights (\mathbf{w}_{o}) on pruning.

The distribution of each node to be of same variance (LeCun et al. 1998):

$$\mathbf{w}_{\mathrm{o}}^{l} \sim \mathcal{U}\left[-\sqrt{\frac{3}{n^{l}}}, \sqrt{\frac{3}{n^{l}}}
ight].$$

Effect of initialization on pruning

CS scores saturate when initialized poorly, leading to a sub-network whose parameters are distributed sparsely toward the end.

- $\mathbf{s}_j = \operatorname{norm}(|\mathbf{g}_j|) = f(\mathbf{w}; \mathcal{D})$, where $\mathbf{g}_j = (\partial L / \partial \mathbf{w}) \odot \mathbf{w}$.
- Necessary to ensure reliable gradient!

Gradients in terms of Jacobians

For a feed-forward network, the gradients satisfy:

$$\mathbf{g}_{\mathbf{w}^{l}}^{\mathsf{T}} = \epsilon \, \mathbf{J}^{l,\mathsf{K}} \mathbf{D}^{l} \otimes \mathbf{x}^{l-1} \; ,$$

where $\epsilon = \partial L / \partial \mathbf{x}^{K}$ denote the error signal, $\mathbf{J}^{l,K} = \partial \mathbf{x}^{K} / \partial \mathbf{x}^{l}$ is the Jacobian from layer l to the output layer K, $\mathbf{D}^{l} \in \mathbb{R}^{N \times N}$ refers to the derivative of nonlinearity, and \otimes is the Kronecker product.

Gradients in terms of Jacobians

For a feed-forward network, the gradients satisfy:

$$\mathbf{g}_{\mathbf{w}^{l}}^{\mathsf{T}} = \epsilon \, \mathbf{J}^{l,\mathsf{K}} \mathbf{D}^{l} \otimes \mathbf{x}^{l-1} \; ,$$

where $\epsilon = \partial L / \partial \mathbf{x}^{K}$ denote the error signal, $\mathbf{J}^{l,K} = \partial \mathbf{x}^{K} / \partial \mathbf{x}^{l}$ is the Jacobian from layer l to the output layer K, $\mathbf{D}^{l} \in \mathbb{R}^{N \times N}$ refers to the derivative of nonlinearity, and \otimes is the Kronecker product.

When pre-activations fall in the linear region of activation (LeCun et al. 1998; Glorot and Bengio 2010), graidents are solely characterized by Jacobian matrices.

Layerwise dynamical isometry

Let $\mathbf{J}^{l-1,l} = \frac{\partial \mathbf{x}^l}{\partial \mathbf{x}^{l-1}} \in \mathbb{R}^{N_l \times N_{l-1}}$ be the Jacobian matrix of layer l. The network satisfies *layerwise dynamical isometry* if the singular values of $\mathbf{J}^{l-1,l}$ are concentrated near 1 for all layers, *i.e.*, for a given $\epsilon > \mathbf{0}$, the singular value σ_j satisfies $|\mathbf{1} - \sigma_j| \le \epsilon$ for all j.

Layerwise dynamical isometry

Let $\mathbf{J}^{l-1,l} = \frac{\partial \mathbf{x}^l}{\partial \mathbf{x}^{l-1}} \in \mathbb{R}^{N_l \times N_{l-1}}$ be the Jacobian matrix of layer l. The network satisfies *layerwise dynamical isometry* if the singular values of $\mathbf{J}^{l-1,l}$ are concentrated near 1 for all layers, *i.e.*, for a given $\epsilon > \mathbf{0}$, the singular value σ_j satisfies $|\mathbf{1} - \sigma_j| \leq \epsilon$ for all j.

- Assuming mean-field approximation of pre-activations (Poole et al. 2016)
- Stronger condition than dynamical isometry (Saxe et al. 2014)

Sparsity degrades signal propagation

Jacobian singular values (JSV) decrease as per increasing sparsity.

 \Rightarrow Sparsity degrades signal propagation.

Enforcing approximate dynamical isometry

Enforce approximate isometry:

$$\min_{\mathbf{W}^l} \| (\mathbf{C}^l \odot \mathbf{W}^l)^{\mathsf{T}} (\mathbf{C}^l \odot \mathbf{W}^l) - \mathbf{I}^l \|_{\mathsf{F}}$$

 \Rightarrow Restore signal propagation!

Enforce approximate isometry:

$$\min_{\mathbf{W}^l} \| (\mathbf{C}^l \odot \mathbf{W}^l)^{\mathsf{T}} (\mathbf{C}^l \odot \mathbf{W}^l) - \mathbf{I}^l \|_{\mathsf{F}}$$

- \Rightarrow Restore signal propagation!
- \Rightarrow Improve training performance!

Enforce approximate isometry:

$$\min_{\mathbf{W}^l} \| (\mathbf{C}^l \odot \mathbf{W}^l)^{\mathsf{T}} (\mathbf{C}^l \odot \mathbf{W}^l) - \mathbf{I}^l \|_{\mathsf{F}}$$

- \Rightarrow Restore signal propagation!
- \Rightarrow Improve training performance!

Experiments:

- Modern neural networks
- Non-linearity functions
- Pruning without supervision
- Transfer of sparsity
- Architecture sculpting

Please check the paper for more.

Observations:

- The initial random weights have critical impact on pruning.
- Sparsity breaks dynamical isometry and degrades signal propagation.

Suggestion:

Approximate isometry to secure signal propagation and enhance training!

Understanding the effects of data parallelism and sparsity on neural network training

Namhoon Lee¹ Thalaiyasingam Ajanthan² Philip H. S. Torr¹ Martin Jaggi³ ICLR 2021

¹University of Oxford ²Australian National University ³EPFL

A parallel computing system

Processing training data in parallel

Accelerate training and model-agnostic

A parallel computing system

Processing training data in parallel

Accelerate training and model-agnostic

Degree of parallelism \equiv Batch size (single node)

Active research for the effect of batch size (Dean et al. 2012; Goyal et al. 2017; Hoffer et al. 2017; Shallue et al. 2019; Lin et al. 2020)

Dense neural network

Sparse neural network

Introducing sparsity by pruning

Sparse neural networks

Save computations and memory

Dense neural network

Sparse neural network

Introducing sparsity by pruning

Sparse neural networks

Save computations and memory

Pruning at initialization prior to training (Lee et al. 2019; Wang et al. 2020)

Subsequent training remains unknown.

Data parallelism & Sparsity

- Efficient deep learning
- Complimentary benefits

Data parallelism & Sparsity

- Efficient deep learning
- Complimentary benefits

What we do:

- 1. Measure their effects on training time
- 2. Develop theoretical analysis to explain the effects

For a given workload

Train for batch sizes and sparsity levels

Measure steps-to-result (K*)

For a given workload

Train for batch sizes and sparsity levels

Measure steps-to-result (K^{\star})

Metaparameter search

- Parameters set before training (*e.g.* learning rate)
- To avoid any assumption on optimal metaparameters
- Search space: preliminary results
- Budget: **100** training trials

For a given workload

Network

Algorithm

Train for batch sizes and sparsity levels

Measure steps-to-result (K^{\star})

Metaparameter search

- Parameters set before training (e.g. learning rate)
- To avoid any assumption on optimal metaparameters
- Search space: preliminary results
- Budget: **100** training trials

Steps-to-result (K^*) vs. Batch size (B)

Measuring the effects

General scaling trend (K* vs. B)

General scaling trend across various workloads

- Linear scaling
- Diminishing returns
- Maximal data parallelism

Measuring the effects

Various sparsity levels

General scaling trend across various workloads

- Linear scaling
- Diminishing returns
- Maximal data parallelism

Sparsity levels (o – 90%)

All sparsity levels

General scaling trend across various workloads

- Linear scaling
- Diminishing returns
- Maximal data parallelism

Sparsity levels (o - 90%)

Difficulty of training under sparsity

Based on convergence properties of stochastic gradient methods:

The relationship between steps-to-result (K^*) and batch size (B)

$${\cal K}^\starpprox {{\cal C}_1\over B} + {\cal C}_2\,, \qquad$$
 where ${\cal c}_1 = {\Delta Leta\over \mu^2arepsilon^2}$ and ${\cal c}_2 = {\Delta\over ar\eta^\star\muarepsilon}$.

Based on convergence properties of stochastic gradient methods:

The relationship between steps-to-result (K^*) and batch size (B)

$$K^{\star} pprox rac{c_1}{B} + c_2$$
, where $c_1 = rac{\Delta L eta}{\mu^2 arepsilon^2}$ and $c_2 = rac{\Delta}{ar\eta^{\star} \mu arepsilon}$.

This result precisely illustrates the observed scaling trends.

- 1. Linear scaling, diminishing returns, maximal data parallelism
- 2. Lipschitz smoothness (L) is what can shift the curve vertically

Lipschitz smoothness under sparsity

Local L throughout training

Local Lipschitz smoothness (L)

The higher sparsity, the higher **L**

Gradient changes relatively too quickly

The difficulty of training sparse networks

Main points:

- 1. General scaling trend for the effects of data parallelism and sparsity
- 2. Theoretical analysis to verify the effects
- 3. Lipschitz smoothness to explain the difficulty of training sparse networks

Code: https://github.com/namhoonlee/effect-dps-public

Contact: namhoon@robots.ox.ac.uk

References i

- Dean, Jeffrey et al. (2012). "Large scale distributed deep networks". In: *NeurIPS*.
- Frankle, Jonathan and Michael Carbin (2019). "The lottery ticket hypothesis: Finding sparse, trainable neural networks". In: *ICLR*.
- Glorot, Xavier and Yoshua Bengio (2010). "Understanding the difficulty of training deep feedforward neural networks". In: *AISTATS*.
- **Goyal, Priya et al. (2017). "Accurate, large minibatch sgd: Training imagenet in 1 hour".** In: *arXiv preprint arXiv:1706.02677.*
- Han, Song, Huizi Mao, and William J Dally (2016). "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding". In: *ICLR*.
- Hoffer, Elad, Itay Hubara, and Daniel Soudry (2017). "Train longer, generalize better: closing the generalization gap in large batch training of neural networks". In: *NeurIPS*.

References ii

- Koh, Pang Wei and Percy Liang (2017). "Understanding black-box predictions via influence functions". In: *ICML*.
- LeCun, Yann A et al. (1998). "Efficient backprop". In: Neural networks: Tricks of the trade.
- Lee, Namhoon, Thalaiyasingam Ajanthan, and Philip HS Torr (2019). "SNIP: Single-shot network pruning based on connection sensitivity". In: *ICLR*.
- Lin, Tao et al. (2020). "Don't Use Large Mini-Batches, Use Local SGD". In: ICLR.
- Poole, Ben et al. (2016). "Exponential expressivity in deep neural networks through transient chaos". In: *NeurIPS*.
- Saxe, Andrew M, James L McClelland, and Surya Ganguli (2014). "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks". In: *ICLR*.
- Shallue, Christopher J et al. (2019). "Measuring the effects of data parallelism on neural network training". In: *JMLR*.

- Wang, Chaoqi, Guodong Zhang, and Roger Grosse (2020). "Picking Winning Tickets Before Training by Preserving Gradient Flow". In: *ICLR*.
- Zhang, Chiyuan et al. (2017). "Understanding deep learning requires rethinking generalization". In: *ICLR*.