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It remains unclear exactly why pruning at 
initialization is effective.

Our take  ⇒  Signal Propagation Perspective.



Initialization & connection sensitivity
Sparsity 
pattern

Sensitivity 
scores



(Linear) uniformly pruned throughout the network.
→ learning capability secured.

Initialization & connection sensitivity
Sparsity 
pattern

Sensitivity 
scores



(Linear) uniformly pruned throughout the network.
→ learning capability secured.

(tanh) more parameters pruned in the later layers.
→ critical for high sparsity pruning.

Initialization & connection sensitivity
Sparsity 
pattern

Sensitivity 
scores



(Linear) uniformly pruned throughout the network.
→ learning capability secured.

(tanh) more parameters pruned in the later layers.
→ critical for high sparsity pruning.

Initialization & connection sensitivity
Sparsity 
pattern

Sensitivity 
scores



(Linear) uniformly pruned throughout the network.
→ learning capability secured.

(tanh) more parameters pruned in the later layers.
→ critical for high sparsity pruning.

CS scores decrease towards the later layers.
→ Choosing top salient parameters globally results in
     a network, in which parameters are distributed
     non-uniformly and sparsely towards the end.

Initialization & connection sensitivity
Sparsity 
pattern

Sensitivity 
scores



(Linear) uniformly pruned throughout the network.
→ learning capability secured.

(tanh) more parameters pruned in the later layers.
→ critical for high sparsity pruning.

CS scores decrease towards the later layers.
→ Choosing top salient parameters globally results in
     a network, in which parameters are distributed
     non-uniformly and sparsely towards the end.

CS metric can be decomposed as                    .
→ necessary to ensure reliable gradient!
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Proposition 1  (Gradients in terms of Jacobians).

For a feed-forward network, the gradients satisfy:                                     ,  where                       denotes the 
error signal,                            is the Jacobian from layer    to the output layer     , and                   refers to the 
derivative of nonlinearity.
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Proposition 1  (Gradients in terms of Jacobians).

For a feed-forward network, the gradients satisfy:                                     ,  where                       denotes the 
error signal,                            is the Jacobian from layer    to the output layer     , and                   refers to the 
derivative of nonlinearity.

Definition 1  (Layerwise dynamical isometry).

Let                                        be the Jacobian matrix of layer   . The network is said to satisfy layerwise 
dynamical isometry if the singular values of          are concentrated near 1 for all layers; i.e., for a given          ,  
the singular value      satisfies                    for all    .

Layerwise dynamical isometry for faithful gradients
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Signal propagation and trainability
Jacobian singular values (JSV) decrease as per 
increasing sparsity.
→ Pruning weakens signal propagation.

JSV drop rapidly with random pruning, compared to 
connection sensitivity (CS) based pruning.
→ CS pruning preserves signal propagation better.

Correlation between signal propagation and trainability.
→ The better a network propagates signals,
     the faster it converges during training.

Enforce Approximate Isometry:

→ Restore signal propagation and improve training!
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Validations and extensions
Modern networks

Non-linearities

Architecture sculptingPruning without supervision

Transfer of sparsity



● The initial random weights have critical impact on pruning.

● Layerwise dynamical isometry ensures faithful signal propagation.

● Pruning breaks dynamical isometry and degrades trainability of a neural network.
Yet, enforcing approximate isometry can recover signal propagation and enhance trainability.

● A range of experiments verify the effectiveness of signal propagation perspective.

Summary


