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Published as a conference paper at ICLR 2019
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ABSTRACT

Pruning large neural networks while maintaining their performance is often desir-
able due to the reduced space and time complexity. In existing methods, pruning is
done within an iterative optimization procedure with either heuristically designed
pruning schedules or additional hyperparameters, undermining their utility. In this
work, we present a new approach that prunes a given network once at initialization
prior to training. To achieve this, we introduce a saliency criterion based on con-
nection sensitivity that identifies structurally important connections in the network
for the given task. This eliminates the need for both pretraining and the complex
pruning schedule while making it robust to architecture variations. After pruning,
the sparse network is trained in the standard way. Our method obtains extremely
sparse networks with virtually the same accuracy as the reference network on the
MNIST, CIFAR-10, and Tiny-ImageNet classification tasks and is broadly applicable
to various architectures including convolutional, residual and recurrent networks.
Unlike existing methods, our approach enables us to demonstrate that the retained
connections are indeed relevant to the given task.

A typical pruning approach requires training steps
(Han et al. 2015, Liu et al. 2019).

Pruning can be done efficiently at initialization
prior to training based on connection sensitivity
(Lee et al., 2019).



Motivation

A typical pruning approach requires training steps
(Han et al. 2015, Liu et al. 2019).

Pruning can be done efficiently at initialization

H=0, 02=0.2, =—
Zg e prior to training based on connection sensitivity
p=-2, 07205 — (Lee et al., 2019).

The initial random weights are drawn from
appropriately scaled Gaussians (Glorot & Bengio, 2010).




Motivation

A typical pruning approach requires training steps
(Han et al. 2015, Liu et al. 2019).

Pruning can be done efficiently at initialization
prior to training based on connection sensitivity
(Lee et al., 2019).

The initial random weights are drawn from
appropriately scaled Gaussians (Glorot & Bengio, 2010).

It remains unclear exactly why pruning at
initialization is effective.



Motivation

A typical pruning approach requires training steps
(Han et al. 2015, Liu et al. 2019).
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The initial random weights are drawn from
appropriately scaled Gaussians (Glorot & Bengio, 2010).

It remains unclear exactly why pruning at
initialization is effective.

Our take = Signal Propagation Perspective.



Initialization & connection sensitivity
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Initialization & connection sensitivity

Sparsity B: IEERETD =] (Linear) uniformly pruned throughout the network.
pattern 0 — learning capability secured.
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Initialization & connection sensitivity

Sparsity e e e e=) (Linear) uniformly pruned throughout the network.
pattern 102 — learning capability secured.
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Initialization & connection sensitivity
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Initialization & connection sensitivity
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(tanh) more parameters pruned in the later layers.
— critical for high sparsity pruning.

CS scores decrease towards the later layers.

— Choosing top salient parameters globally results in
a network, in which parameters are distributed
non-uniformly and sparsely towards the end.
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(tanh) more parameters pruned in the later layers.
— critical for high sparsity pruning.

CS scores decrease towards the later layers.

— Choosing top salient parameters globally results in
a network, in which parameters are distributed
non-uniformly and sparsely towards the end.
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Layerwise dynamical isometry for faithful gradients

Proposition 1 (Gradients in terms of Jacobians).

For a feed-forward network, the gradients satisfy: gZ, = eJ**D' @ x"!, where e = 0L/8x¥ denotes the
error signal, J*¥ = gxX /gx! is the Jacobian from layer [ to the output layer K,and D' e RV*Nrefers to the

derivative of nonlinearity.



Layerwise dynamical isometry for faithful gradients

Proposition 1 (Gradients in terms of Jacobians).

For a feed-forward network, the gradients satisfy: gZ, = eJ**D' @ x"!, where e = 0L/8x¥ denotes the
error signal, J*¥ = 9xX /9x! is the Jacobian from layer [ to the output layer K,and D! e R¥*Nrefers to the
derivative of nonlinearity.

Definition 1 (Layerwise dynamical isometry).

Let Ji-1 = & RNxMe1 pe the Jacobian matrix of layer 1. The network is said to satisfy layerwise

T ooxi-1

dynamical isometry if the singular values of J*~1 are concentrated near 1 for all layers; i.e., for a given € > 0,
the singular value o; satisfies |1 —o;| <e forall j.



Signal propagation and trainability
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Signal propagation and trainability
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Signal propagation and trainability
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Validations and extensions

Modern networks

VGG16

— LDlDense
Lpics.
— LDICSAF
— LDICS-AIS

Pruning without supervision
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] 5000 10000 15000 20000 25000 30000 35000
Iteration
Non-linearities
VGG16 ResNet32
Initialization  tanh  l-relu selu \ tanh l-relu selu
VS-L 9.07 7.78 8.70 13.41 12.04  12.26
VS-G 9.06 7.84 8.82 1344 12.02 12.32
VS-H 9.99 843 9.09 | 1312 11.66 1221
LDI 8.76 7.53 821 1322 11.58 11.98
LDI-AIL 8.72 747 8.20 13.14 1151 11.68

Loss Superv. K=3 K=5 K=7
GT v 2.46 2.43 2.61
Pred. (raw) X 3.31 3.38 3.60
Pred. (softmax) X 3.11 3.37 3.56
Unif. X 2.77 2.77 2.94

Transfer of sparsity

Dataset Error Error
Category prune train&test | sup. — unsup. (A) ‘ rand
Standard MNIST  MNIST 242 — 294 +0.52| 15.56
Transfer F-MNIST MNIST 2.66 - 2.80 +0.14| 18.03
Standard F-MNIST F-MNIST } 11.90 — 13.01 +1.11 ‘ 24.72
Transfer MNIST F-MNIST 14.17 — 13.39  -0.78 | 24.89

Architecture sculpting
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Summary

e The initial random weights have critical impact on pruning.
e Layerwise dynamical isometry ensures faithful signal propagation.

e Pruning breaks dynamical isometry and degrades trainability of a neural network.
Yet, enforcing approximate isometry can recover signal propagation and enhance trainability.

e A range of experiments verify the effectiveness of signal propagation perspective.



