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deep neural networks a critical component of computing”



AI is the most rapidly growing area in all of science, and 
certainly one of the most talked-about topics in society.

Artificial intelligence
is transforming nearly everything.



The success of AI
is driven by deep learning.

The incredible advances in AI would not have been possible 
without some of the foundations, namely, deep learning.

🔺 the response from Google Bard

Deep learning is a subset of machine learning that uses artificial 
neural networks to learn from data. Artificial neural networks are 
inspired by the human brain, and they are able to learn complex 
patterns from large amounts of data. Deep learning has been used ...



G. Hinton, Y. LeCun, and Y. Bengio
pioneered deep learning.

They collectively and independently worked over 30 years.

● establish conceptual foundations for deep networks

● identify a lot of interesting phenomena

● develop engineering advances in practice

Apparently, it wasn’t always easy.



Two paradigms since 1950s
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The two paradigms:
Symbolic AI and Connectionist AI

Symbolic AI 

● the logic-inspired approach
● use human-readable symbolic rules
● focus on reasoning

Connectionist AI

● the biological-inspired approach
● learn strengths of the connections in a neural network (vectors)
● focus on learning



While the learning approach can solve it,
the symbolic approach can’t.

Image captioning task:

Symbolic AI people tried this for a long time, but they failed.

● It’s not obvious how to write that program.

It became fairly easy for connectionist AI to solve this task.

● Current methods can capture subtleties.



The central question:
can they learn to do it?

Large neural networks are very powerful computing devices.

● But can a neural network learn a difficult tasks? by starting from 
random weights and acquiring all of its knowledge from the 
training data?

Early researchers like Turing and Selfridge proposed that 
neural networks with initially random connections could be 
trained by reinforcement learning.

● This is extremely inefficient.

Pandemonium (1959) trial and error



Perceptrons:
A simple learning procedure.

~1960: Rosenblatt introduced a simple, efficient learning 
procedure that could figure out how to weight features of the 
input in order to classify inputs correctly.

1969: Minsky and Papert showed that perceptrons had some 
very strong limitations on what they could do.

1970s: The first neural net winter has begun.



Back-propagation in 1980s
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1980s: The back-propagation procedure allows neural networks 
to design their own features and have multiple layers of 
features.

● It could learn vector embeddings that captured the meanings of 
words just by trying to predict the next word in a string.

● It looked as if it would solve tough problems like speech 
recognition and shape recognition.

Back-propagation
created a lot of excitement.



What is an artificial neuron?

We make a gross idealization of a real neuron so that we can 
investigate how neurons can collaborate to do computations 
that are too difficult to program such as:

● Convert the pixel intensity values of an image into a string of 
words that describe the image.

McCulloch-Pitts neuron (1943)



You have weights on the incoming weights for each of these 
neurons, and as you change those incoming weights, you’re 
changing what feature that neuron will respond to. So by 
learning these weights, you’re learning the features.

The question is how are we gonna train it?

● Supervised (or unsupervised) training
● “Mutation” methods?

What is an artificial neural network?

A feed-forward neural network



How do we train artificial neural networks?
A “mutation” method that is easy to understand?

Supervised training: Show the network an input vector and tell 
it to the correct output.

● Adjust the weights to reduce the discrepancy between the correct 
output and the actual output.

A mutation method:

● Pick one weight. Increase or decrease the weight slightly and 
measure how well the network now does. Keep it if it helped.



Instead of perturbing the weights one at a time and measuring 
the effect, use calculus to compute the error gradients for all of 
the weights at the same time.

● With a million weights, this is more efficient than the mutation 
method by a factor of a million.

● Once the gradient is computed, perform stochastic gradient 
descent, which works really well at scale.

The backpropagation algorithm



How to learn many layers of features (~1985)

1. Forward pass through the network (for a small batch).

2. Calculate the difference between what you got and what you 
wanted.

3. Backward pass with the chain rule.

4. Take a stochastic optimisation step (e.g., SGD).

● It works really well at scale.



A big disappointment,
and the 2nd neural net winter.

1990s: BP works pretty well, but underperforms the 
expectations of its proponents on modest-sized datasets.

● Symbolic AI: it is silly to expect to learn difficult tasks in big deep 
nets that start with random connections and no prior knowledge.

● A series of rejections from NIPS, ICML, and CVPR.

The second neural network winter begins.



the Deep learning revolution
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The return of backpropagation,
largely due to a lot of data and compute.

Between 2005 and 2009, several technical advances enabled 
back-propagation to work better in feed-forward nets.

● Unsupervised pre-training; random dropout of units; rectified 
linear units.

Back-propagation works amazingly well if you have two things:

● a lot of labeled data
● a lot of convenient compute power (e.g. GPUs)



Acoustic modeling:
The killer App (Mohamed, Dahl & Hinton 2009)

Acoustic modeling: for the middle frame of the spectrogram, 
which piece of which phone in the speaker is trying to express?

● After the standard post-processing this gets 23.0% phone error 
rate; the best previous result on TIMIT was 24.4%.

Soon after, leading speech groups at MSR, IBM & Google 
developed them further.

● By 2012, it was being used for voice search on the Android.
● Now the best speech recognition systems all use some form of 

neural net trained with backpropagation.



Object Recognition:
the 2012 ImageNet object recognition challenge.

The challenge:

● Given a million high-resolution training images of 1000 different 
classes of object, get the “correct” class in your top 5 bets.

Error rates:

● While all previous / standard ones asymptote at about 25% error, 
the AlexNet got 16% error.

● By 2015 it was down to 5%. And now it’s down to considerably 
below that.



A radically new way to do
machine translation (Sutskever, Vinayals and Le, 2014)

The sequence-to-sequence model:

● The encoder read reads in the sequence of words, and the decoder 
expresses the thought in the target language (“thought vector”).

A lot of advances since 2014:

● Soft attention, pre-training, and the transformer networks.

The final nail in the coffin of symbolic AI:

● Machine translation is an idea task for symbolic AI because the 
input is symbols and the output is symbols (“vectors inside”).



Continuing advances



The future of neural network vision

Convolutional nets get a huge win by wiring in the idea that if a 
feature is useful in one location it is useful everywhere.

● But they do not recognize objects the same way as us, hence 
adversarial examples.

People recognize objects by using the viewpoint invariant 
geometrical relationships between an object and its parts.

● We can make neural networks do this by using transformers.

Stacked Capsule Autoencoder (2019)

Adversarial example (2015)



The future of neural networks

Nearly all artificial neural nets use only two time scales: slow 
adaptation of weights and fast changes in neural activity.

But synapses adapt at multiple different time scales.

● Using fast weights for short-term memory will make neural 
networks different and better.

● It can improve optimization.
● It allows true recursion (1973, unpublished).

Forward-forward, Hinton (2022)



Closing



Summary &
The message
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We’ve seen the history of deep learning, and its transformative 
and revolutionary impact on society.

Deep learning with large neural networks is becoming critical 
for nearly everything.



Credits

G. Hinton and Y. LeCun’s Turing lectures at 2019 ACM FCRC,

J. Doumont’s Trees, maps, and theorems,

various sources on the Internet for visual materials,

the audience who just came to this event (on Friday),

and, of course, my family.

“a baby is laying on a seat with a remote”, 
generated using        Hugging Face API



Thank you

-Namhoon Lee,  POSTECH


